Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Nilai Calon Mahasiswa dengan Algoritma Backpropagation (Studi Kasus: Data Kaggle) Nur Nafi'iyah; Rizki Ardhian Ahmad; Siti Mujilahwati
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 3, No 1 (2020): April 2020
Publisher : Program Studi Teknik Informatika, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.017 KB) | DOI: 10.32672/jnkti.v3i1.1945

Abstract

Mahasiswa yang akan melakukan pendaftaran ke perguruan tinggi, baik ke jenjang sarjana atau pascasarjana pasti harus diseleksi. Proses seleksi dengan tes dan serangkaian kegiatan lainnya. Nilai-nilai tes tersebut kemudian dianalisa untuk mengetahui apakah mahasiswa layak diterima atau tidak. Beberapa perguruan tinggi di Amerika Serikat atau Inggris melakukan serangkaian tes mulai tes akademik, tes bahasa Inggris dan kemampuan meneliti. Dari beberapa data hasil seleksi atau ujian dapat digunakan untuk memprediksi calon mahasiswa baru yang akan masuk perguruan tinggi. Tujuan penelitian ini adalah memprediksi nilai calan mahasiswa yang akan masuk di perguruan tinggi. Studi kasus ini mengambil dari data kaggle, yang akan diprediksi dengan menggunakan algoritma backpropagation. Variabel yang menjadi input adalah GRE score, TOEFL score, Universiy rating, SOP, LOR, GPA, Research. Output dari prediksi nilai calon mahasiswa dalam angka. Proses training backpropagation menggunakan toole Matlab dengan arsitektur jaringan 2 model. Model ke-1 menggunakan 7-5-1 dengan hasil MSE 0,00272. Model ke-2 menggunakan 7-4-1 dengan hasil MSE 0,0029.
Prediksi Nilai Calon Mahasiswa dengan Algoritma Backpropagation (Studi Kasus: Data Kaggle) Nur Nafi'iyah; Rizki Ardhian Ahmad; Siti Mujilahwati
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 3, No 1 (2020): April 2020
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v3i1.1945

Abstract

Mahasiswa yang akan melakukan pendaftaran ke perguruan tinggi, baik ke jenjang sarjana atau pascasarjana pasti harus diseleksi. Proses seleksi dengan tes dan serangkaian kegiatan lainnya. Nilai-nilai tes tersebut kemudian dianalisa untuk mengetahui apakah mahasiswa layak diterima atau tidak. Beberapa perguruan tinggi di Amerika Serikat atau Inggris melakukan serangkaian tes mulai tes akademik, tes bahasa Inggris dan kemampuan meneliti. Dari beberapa data hasil seleksi atau ujian dapat digunakan untuk memprediksi calon mahasiswa baru yang akan masuk perguruan tinggi. Tujuan penelitian ini adalah memprediksi nilai calan mahasiswa yang akan masuk di perguruan tinggi. Studi kasus ini mengambil dari data kaggle, yang akan diprediksi dengan menggunakan algoritma backpropagation. Variabel yang menjadi input adalah GRE score, TOEFL score, Universiy rating, SOP, LOR, GPA, Research. Output dari prediksi nilai calon mahasiswa dalam angka. Proses training backpropagation menggunakan toole Matlab dengan arsitektur jaringan 2 model. Model ke-1 menggunakan 7-5-1 dengan hasil MSE 0,00272. Model ke-2 menggunakan 7-4-1 dengan hasil MSE 0,0029.