cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surakarta,
Jawa tengah
INDONESIA
SAINS TANAH - Journal of Soil Science and Agroclimatology
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol 16, No 2 (2019): December" : 10 Documents clear
Utilization of Soil Function Information for Assessing Soil Quality of Rice Field in the Quaternary-Tertiary Volcanic Transitional Zones in Central Java Ajun Prayitno; Junun Sartohadi; Makruf Nurudin
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1430.954 KB) | DOI: 10.20961/stjssa.v16i2.35492

Abstract

Soil quality information of the rice field in the Quaternary-Tertiary volcanic transitional zone has not been specifically reported. Research on the assessment of soil quality widely reported only focuses on the discussion of quantitative-qualitative techniques and the use of minimum data sets without paying serious attention to the soil functions. This study aimed to assess soil quality through qualitative and quantitative methods based on the soil function information approach. The study was conducted in the quaternary-tertiary volcanic transitional zone with special cases of thick soil, high clay content, low nutrient content, high erosion, and vulnerability to landslide, which affects soil quality and farmer cultivation practice. The qualitative soil quality approach was based on the local knowledge of the farmers. The quantitative soil quality indexing was performed with the Soil Management Assessment Framework (SMAF) method to obtain sensitive indicators. The results found that the characteristics of paddy soil had high clay content and thick topsoil layers. The paddy soil is commonly called as ngrawa/mbel soil. The minimum qualitative data sets included color, plant condition, texture, ease of tillage, and drainage. Meanwhile, the minimum quantitative data sets included Na-dd, Mg-dd, texture, bulk density, porosity, and permeability. Information on soil functions obtained included the availability of nutrients, rooting media, root penetration, water storage capacity, and soil permeability. The soil function information approach can be used to assess soil quality in the quaternary-tertiary volcanic transitional zone.
Studying the Residual Effect of Zeolite and Manure on Alfisols Cation Exchange Capacity and Green Bean Yield Ahmad Yazid Fudlel; Slamet Minardi; Sri Hartati; Jauhari Syamsiyah
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (956.399 KB) | DOI: 10.20961/stjssa.v16i2.30190

Abstract

Nowadays the innovations in organic agriculture systems continue to be developed to achieve a sustainable agriculture system. In Indonesia with high rainfall, nutrient loss is still a major problem. The application of zeolite and manure as a soil amendment is expected to increase nutrients available in soil and cation exchange capacity of the soil in the long term. The results on the first planting season showed a significant increase in chemical soil fertility. The objective of this study is to research the effect of residue zeolite and manure on soil chemical fertility and yields of the second planting season. This study used a complete randomized block design. The factors were a dose of zeolite (Z1: 2.5 tons ha -1; Z2: 5 tons ha-1) and kind of manure (P1: quail manure; P2: cow manure), with three replications. The result showed that zeolite treatment of 5 tons ha-1 and cow manure increased the total N soil by 27.78% and 45.4% compared to the control. The treatment of quail manure increased soil organic matter 78.78% compared to the control. The treatment of cow manure increased the green bean yield 28.76% compared to the control.
Process and Mineralogy of Volcanic Materials on the South Side of the Old Lawu Volcano in Java Island Mohammad Nurcholis; Dwi Fitri Yudiantoro; Darban Haryanto; Ahmad Bagus Dianputra; Krishna Aji
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1582.904 KB) | DOI: 10.20961/stjssa.v16i2.27118

Abstract

Activities of Old Lawu volcano in the past resulted in various soil development in the south side of the volcano, especially in the area of the east side of Wonogiri and west side of Ponorogo, that located in the Java island. This area is also famous as herbal crops producer for raw materials of traditional herbal medicine industry. The purpose of this research is to identify the process of exposure of the parent materials in the Old Lawu volcanic environment, the development of the soil parent materials, and the mineralogy variation.  Four Sites with different geological formation were observed, and each Site was selected for soil profile identification on the process of weathering of rocks.  All layers of each profile were then sampled and then sand fraction of the fine earth particle was determined for the mineral type using X-ray diffraction (XRD).  The results showed that materials of the Old Lawu volcanic activity that was of quaternary period had sized material of gravel, sand, silt, and clay. These materials were then exposed and undergone the process of weathering, transportation, and sedimentation according to the landform at that period. The development of soil as geoheritage in this region was influenced by the material size, landform, and settling process. There are four typologies of the environment on the soil development at the present study, there are: (1) Soil that developed in the inter-fluvial basins is characterized by thick soil and a clear horizon differentiation process as a feature of maturity stage of soil development. (2) Soil developed on the slope of hill area is characterized by shallow in solum and it is in early-stage soil development. (3) Soil developed on the volcanic materials that were transported and sedimented in the river environment is characterized by the thick soil above the layered fine size parent material with a variety of color. (4) Soil developed on the tertiary breccia showed early soil development.
Bioremediation Using Bacillus subtilis and Saccharomyces cerevisiae to Reduce Chromium in Electroplating Liquid Waste Mardiyono Mardiyono; Sajidan Sajidan; Mohammad Masykuri; Prabang Setyono
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1112.837 KB) | DOI: 10.20961/stjssa.v16i2.29730

Abstract

The electroplating industry produces liquid waste containing a small number of heavy metals but is toxic. Wastewater containing chromium (Cr) absorbed into the soil will affect soil fertility. Waste management is needed so that the abiotic and biotic environment is not poisoned by Cr. Bioremediation using bacterial and fungal microbes are applicable to reduce Cr levels in electroplating liquid waste. The purpose of this research was to investigate the reduction level of Cr in electroplating liquid waste through bioremediation using Bacillus subtilis and Saccharomyces cerevisiae. Laboratory experiments were conducted using variations in microbial concentrations (102.5 cells ml-1 and 105 cells ml-1), variations in microbial types (Bacillus subtilis bacteria, Saccharomyces cerevisiae fungi, and mixtures of both microbes), and variations in incubation time (6, 12, and 24 hours). The initial Cr concentration and the results of the bioremediation process were determined by measuring the absorbance and the Cr levels using Atomic Absorption Spectrophotometry (AAS). Based on experiments, the use of Bacillus subtilis 102.5 cells ml-1 with a 24-hour incubation time reach the highest percentage reduction in Cr (88.96%), followed by 12-hours incubation time (84.73%), and 6-hours incubation time (79.21%). Furthermore, the use of a microbial mixture of Bacillus subtilis and Saccharomyces cerevisiae 102.5 cells ml-1 with 6-hours, 12-hours and 24-hours incubation time was able to reduce the levels of Cr respectively by 77.46%; 80.18% and 83.04%. Next, Saccharomyces cerevisiae 105 cells ml-1 with 6-hours, 12-hours, and 24-hours incubation time was able to reduce levels of Cr in a row by 50.17%; 52.35% and 55.63%. The results of this study indicate that the bioremediation process using the microbial Bacillus subtilis and Saccharomyces cerevisiae is proven to reduce the levels of Cr in the electroplating industry wastewater. The highest reduction results were achieved on the use of 24-hour incubation time and the use of Bacillus subtilis with a concentration of 102.5 cells ml-1 at 88.96%.
Tree Canopy and Black Plastic Cover on Flowering, Growth, and Yield of Some Peas Novika Ayu Lestari; Supriyono Supriyono; Eddy Triharyanto; Sri Nyoto
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (961.885 KB) | DOI: 10.20961/stjssa.v16i2.25546

Abstract

Field bean (Dolichos lablab), adzuki bean (Vigna angularis), pigeon pea (Cajanus cajan) and winged bean (Psophocarpus tetragonolobus) are a group of peas or legumes which used as an alternative food beside groundnut, soybean or mung bean. The day length or planting season is one factor that affects plants to flower. Long day or bean offseason can inhibit plants to flower, especially for short-day plants. covering the plant from sunlight may trigger a quick flowering of plants. The purpose of this research was to find out how to prompt plants to flower, growth, and yield during the off-season period in a very short time. This research was conducted by using a Randomized Completed Block Design (RCBD) with 2 factors. The first factor was shortening the day length (control, black plastic cover for 2 hours day-1, plant under trees canopy covered) and the second factor was some kind of peas (field bean, adzuki bean, pigeon pea, and winged bean). Black plastic cover was used 2 hours a day-1 during 30 days after 14 days of plantation. The research was replicated 3 times. The results showed that field bean combinations with control and plastic closure gave a higher number of pods. For all field bean treatments, plastic-closure on pigeon pea and also winged bean provided higher straw fresh weight than control and plastic closure on adzuki bean and winged bean under the tree. Covering plants using plastic for 2 hours day-1 tends to increase e the total flowering number and seed yield at each plant. The growth component showed that field bean was higher than adzuki bean, winged bean, and pigeon pea. The effort to shorten a long day plantation had no significant effect on many variables due to climate anomaly in the 2017 rain show on start to finish this year. However, pigeon pea did not have flowers when planted on a long day or offseason period.
Current Evidence and Future Projections: a Comparative Analysis of the Impacts of Climate Change on Critical Climate-Sensitive Areas of Papua New Guinea Patrick S. Michael
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1816.299 KB) | DOI: 10.20961/stjssa.v16i2.35712

Abstract

Climate change is a global concern arising from spatial or temporal changes in precipitation, temperature and greenhouse gases. The impacts of this on critical climate-sensitive areas are largely on land, marine resources, forestry and agriculture, and their biodiversity and ecosystems. In Papua New Guinea (PNG), the mainstay (85%) of the rural people is on land and agriculture, compared to resources obtained from the marine areas and forest. Productivity on land depends on climatic factors and a compromised climate affects land, which in turn affects forestry, agriculture and the marine environment (resources and ecosystems). Because of this, a lot of resources have been invested in climate change to understand the impacts; however, much is yet to be achieved, especially in the developing nations. In PNG, understanding the types of changes in climate that will be experienced is important to be resilient, to mitigate and to adapt. In this review, the potential impact of global climate change on climate of PNG and the impact of the new (future) climate on land, marine and forest resources and their biodiversity and ecosystems are analyzed. Moreover, the impacts on crop agriculture are discussed. Analysis of available data shows that the temporal and spatial changes in precipitation and temperature projections of the future climate are within current optimum crop production ranges, at least up to 2090. Since most staple and plantation crops in PNG are C3 plants, an increase in CO2 levels will have a fertilizing effect on productivity. The plastic effects on certain crops may benefit some farmers as temperature, precipitation and CO2 levels change.
Characteristics of Corn Cobs Waste Activated Carbon for Slow Release Micro Fertilizer Carrier Priyadi Priyadi; Windu Mangiring
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1470.433 KB) | DOI: 10.20961/stjssa.v16i2.25480

Abstract

The problem of Fertilization, especially micro fertilizers, is toxication due to the excessive application. Using the concept of slow release fertilizer is a very possible solution to overcome the problem. The objectives of this study are 1) to characterize corn cobs activated carbon for slow release micro fertilizer carrier, 2) to produce and to test of slow release micro fertilizer.The research was carried out by converting corn cobs into activated carbon with an activation temperature of 600 ˚C and water vapor for 90 minutes. Production of slow release fertilizer was carried out by soaking activated carbon in a solution of CuSO4, FeSO4 and ZnSO4 1N for 24 hours. The results of micro fertilizer were then characterized, then the solubility test was carried out. The results of the characteristic analysis showed that some parameters that could be used as fertilizer carriers include, iodine adsorption 404.21 mg g-1, adsorption of methylene blue 16.88 mg g-1, the pore volume of 0.19 cc mg-1 and surface area of 315.77 m2 g-1. While, based on the results of micronutrient solubility test the highest nutrient content that can be absorbed by activated carbon (AA) is found in Cu, followed by Zn and Fe. It relates to the characteristics possessed by activated carbon namely specific surface area, pore volume, and nutrient diameter size. 
Potential Use of Alkaline-Activated Indonesian Pumice Powder as Lead Adsorbent in Solution System Faridlotul Hasanah; Syaiful Anwar; Arief Hartono; Untung Sudadi
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1051.07 KB) | DOI: 10.20961/stjssa.v16i2.34621

Abstract

Pumice is a volcanic material that found abundant in Indonesia. Owing to its physicochemical characteristics it can be utilized as a low-cost natural adsorbent for cationic contaminants. This study aimed to assess the performances of adsorbents prepared from NaOH-activated powder of Lombok and Kediri pumices for lead removal in solution systems based on their maximum adsorption capacity and removal efficiency parameters. The adsorption tests were done in batch experimentation using pumice powder of 74 μm particle size activated with 0.5, 1, and 2 M NaOH and lead solutions with initial concentrations of 0-260 mg.L-1. The most favorable NaOH activation concentration for both pumices was 0.5 M which resulted from Lombok pumice prepared-adsorbent with Pb maximum adsorption capacity based on linearized conventional and rearranged Langmuir isothermal adsorption models of 236.4 and 186.3 mg.g-1, while those of Kediri pumice were of 218.4 and 210.8 mg.g-1, respectively. The removal efficiency of both adsorbents were >80% at the initial Pb concentration of <100 mg.L-1 and around 50-80% at 100-260 mg.L-1. Both pumices are therefore considered potential to be utilized as an adsorbent for cationic contaminants in solution systems with reliable performances.
Estimation of Soil Organic Matter on Paddy Field using Remote Sensing Method Luthfan Nur Habibi; Komariah Komariah; Dwi Priyo Ariyanto; Jauhari Syamsiyah; Takashi S.T. Tanaka
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1351.255 KB) | DOI: 10.20961/stjssa.v16i2.35395

Abstract

Soil organic matter (SOM) is one of the important parameters in agriculture management, thus estimating its distribution on the land will be essential. Remote sensing can be utilized to map the SOM distribution in the large-scale area. The objective of this research was to determine the estimation of SOM distribution on the paddy field in Sukoharjo Regency, Indonesia using Landsat 8 OLI imagery. The sampling points were determined by purposive sampling based on an overlay of land use classification map of paddy field, NDSI (Normalized Difference Soil Index) map, and soil type map. The analysis method was used simple linear regression (SLR) and multiple linear regression (MLR) between SOM content and a digital number of Landsat 8 OLI imagery. The SLR analysis resulted that all band except band 1 and 5 of Landsat 8 OLI Imagery have the capability to estimating SOM. The MLR model based on best subset analysis resulted in the combination of bands 3, 4, 6, and 7 was the best model for estimating SOM distribution (R2=0.399).  The MLR model was used to create SOM distribution map on paddy field in Sukoharjo Regency and resulted in the SOM range of the area is distributed from very low (<1%) to moderate (2.1–4.2%) with the largest area was on low level (1–2%) about 11,028 ha. The result indicates that Landsat 8 OLI Imagery could be used for mapping the SOM distribution.
The Effects of Biochar and Compost on Different Cultivars of Shallots (Allium ascalonicum L.) Growth and Nutrient Uptake in Sandy Soil Under Saline Water Rahayu Rahayu; Jauhari Syamsiyah; Vita Ratri Cahyani; Siti Kharisma Fauziah
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 2 (2019): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1121.52 KB) | DOI: 10.20961/stjssa.v16i2.34209

Abstract

High salinity irrigation will cause nutrient uptake and shallot growth to deplete due to its sensitivity to salinity. This research aimed to investigate the effect of biochar and compost on shallot growth and nutrient uptake in sandy soil like Entisol when irrigated using salty water. This research carried out some pot experiments and put on the field using a completely randomized design. The first factor was based on the amendment with control of 20 tons ha-1 of Biochar, 10 tons ha-1 of compost, and a mixture of 10 tons ha-1 biochar and 5 tons ha-1 of compost; the second factor was composed of 3 shallot cultivars (Brebes, Pemalang, and Purbalingga). Each pot was filled with 15 kg of soil; the pot 30 cm in diameter, incubated with saline water and irrigated by 2 dS m-1. The results show that irrigation with ground saline water causes Entisol to increase exchangable Na, Ece and SAR, decrease exchangeable Ca and Mg. The application of all treatments decreased SAR. The application of compost significantly increased N and K uptake but made soil pH, EC, and SAR to decrease while fresh weight and dry weight of bulb in Brebes cultivars increased. The combination of biochar with 5 tons ha-1 of compost produced the highest yield on plant height and number of tuber in Pemalang cultivars and had the largest tuber diameter in Purbalingga cultivars. There is an interaction between amendment and cultivar on plant height, fresh weight of tuber (P<0.01), dry weight of tuber (P<0.01).

Page 1 of 1 | Total Record : 10