cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surakarta,
Jawa tengah
INDONESIA
SAINS TANAH - Journal of Soil Science and Agroclimatology
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 19, No 1 (2022): June" : 12 Documents clear
Estimates of methane and nitrous oxide emission from a rice field in Central Java, Indonesia, based on the DeNitrification DeComposition model Umi Munawaroh; Komariah Komariah; Dwi Priyo Ariyanto; Muhamad Khoiru Zaki; Keigo Noda
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.56928

Abstract

Indonesia is the world’s third largest rice producer, with most rice being cultivated (estimated 3.1 million ha) in Central Java. However, one of the environmental challenges in producing rice is greenhouse gas (GHG) emissions from rice fields. Therefore, understanding the GHG emissions (methane and nitrous oxide) from the rice farming system is important for better management practices. The objective of this study is to estimate the GHG emissions supported by a satellite database, namely, the DeNitrification DeComposition (DNDC) model, at three regencies at Central Java, Indonesia, Cilacap, Karanganyar, and Pati, as well as the factors determining the emissions. The DNDC model was obtained from https://www.dndc.sr.unh.edu, which consists of three main submodels that worked together in simulating N2O and N2 emissions: (1) the soil-climate/thermal-hydraulic flux submodel, (2) the decomposition submodel, and (3) the denitrification submodel. The results showed that the N2O emissions from rice farming in Karanganyar, Cilacap, and Pati were 19.0, 18.8, and 12.8 kg N ha−1 yr−1, respectively, while they were 213.7, 270.6, and 360.6 kg C ha−1 yr−1 for CH4 emissions, respectively. Consecutive dry or high precipitation, which resulted in cumulative depleted or elevated soil moisture, respectively, along with warmer temperature likely promoted higher methane and nitrous oxide. Experimental fields for validating the model in accordance with various agricultural practices are suggested for further study. Overall, the DNDC model has successfully estimated the CH4 and N2O emissions in Central Java when incorporated with various secondary climatic and land management big data resources.
Differential response to acidic pH in rice seedlings Jay Prakash Awasthi; Bedabrata Saha; Bhaben Chowardhara; Pankaj Borgohain; Smita Sahoo; Bhaben Tanti; Sanjib Kumar Panda
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.57011

Abstract

Acidic soil is a serious harmful problem for rice crop productivity. Approximately 50% of the world’s potentially arable soils are acidic, whereas in North East (NE) India 80% of arable soils are effected. In nature, it exists synergistically with other metal stresses. Hence most of the studies to date were performed in combinations. This paper highlights the detrimental effect of acidity on plants to differentiate between the effect of acidity on plant growth to that of stress in combinations. We depict it through a cascade of morphological and physiological assays, including growth, reactive oxygen species (ROS), and photosynthesis-related parameters under acidic and non-acidic rhizospheric conditions in rice seedlings of Disang and Joymati. Up to 31% root length reduction was observed in Joymati, and up to 17% reduction in Disang variety; whereas, root-relative water content was observed to reduce by 3% in Disang and 9% was recorded in Joymati cultivars. Overall, we observed limited effect on morphometric parameters like root length, biomass, and chlorophyll content irrespective of variety analyzed. On the contrary, ROS accumulation was observed to be significantly increased; more in Joymati (sensitive variety) when compared to Disang (tolerant variety). Although there was not much decrease in chlorophyll content, photosynthesis was affected immensely as depicted from chlorophyll fluorescence parameters. Hence through this study, we hypothesize that the response of plants to acid stress is rather slow.
Modeling the responses of Coffee (Coffea arabica L.) distribution to current and future climate change in Jimma Zone, Ethiopia Fedhasa Benti Chalchissa; Girma Mamo Diga; Alemayehu Regassa Tolossa
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.54885

Abstract

Coffee arabica species have already been affected by climate change, with socioeconomic implications. Smallholder farmers have encountered and will continue to confront issues in maintaining their coffee plants' productivity. This study aimed to determine which bio-climatic characteristics are most beneficial to coffee production in current and future climate change scenarios. The responses of coffee distribution to climatic conditions were studied under the current, moderate representative concentration (RCP4.5), and worst representative concentration (RCP8.5) pathways using a bioclimatic modelling approach or the Maxent model. Multiple regression models (path and response optimizers) were used to parameterize and optimize the logistic outputs of plant distribution. Results showed that climatic factors such as total precipitation, precipitation seasonality, and mean temperature are the most important climatic factors in determining the success of C. arabica farming. Under the current conditions, total precipitation significantly benefits C. arabica whereas precipitation seasonality significantly affects it (P < 0.001). In the current condition, coffee responded neither negatively nor positively to the mean temperature, but positively in RCP4.5 and RCP8.5. It would also respond positively to increased total precipitation under RCP4.5 but negatively to rising precipitation under the RCP8.5. The average five top-optimal multiple responses of C. arabica were 75.8, 77, and 70% for the present, RCP4.5, and RCP8.5, respectively. The positive response of C. arabica to bioclimatic variables in the RCP4.5 scenario is projected to be much bigger than in the present and RCP4.5 scenarios (P < 0.001). As precipitation and temperature-related variables increase, the cultivation of C. arabica will increase by 1.2% under RCP4.5 but decrease by 5.6% under RCP8.5. A limited number of models and environmental factors were used in this study, suggesting that intensive research into other environmental aspects is needed using different models.
A numerical estimate of water level elevation due to a cyclone associated with a different landfall angle Md. Abdul Al Mohit; Md. Towhiduzzaman
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.56600

Abstract

Bangladesh is a disaster-prone riverine country in South Asia, most of them are cyclone-related. That's why research on cyclones in this region is very important. This study investigates the surge height associated with the changes of landfall angle due to climate change. The deflected angle of landfall was investigated from the data analysis of Bangladesh Meteorological Department (BMD), Joint typhoon warning center (JTWC), and Meteorological Research Institute- Atmospheric global circulation model (MRI-AGCM). A cyclone of future climate has been investigated from the Database for Policy Decision-Making for Future Climate Change (d4PDF) data under present and future climate conditions. To find the surge height, a vertically shallow water Cartesian coordinate model has been used to simulate the surge height. The shallow water model equations were discretized through finite difference technique with the Arakawa C grid system and solved by a conditionally stable semi-implicit manner. The fluctuated striking angle due to climate change was then applied to the known cyclone BOB 01 and the associated surge height was then investigated. We found that our simulated result and the observed result make a good agreement. We have also seen that different types of cyclones have a significant effect on the water level elevation due to their landfall angle
Consequences of the catastrophic wildfire in 2020 for the soil cover of the Utrish State Nature Reserve Kamil Kazeev; Valeria Vilkova; Aslan Shkhapatsev; Olga Bykhalova; Yana Rudenok; Мikhail Nizhelskiy; Sergey Kolesnikov; Tatiana Minkina; Svetlana Sushkova; Saglara Mandzhieva; Vishnu D Rajput
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.58709

Abstract

Present work aimed to assess the impact of pyrogenic effect on the flora, and quality and health of soils of the Utrish Reserve. Studies performed on the territory of reserve within a month after the fire revealed that the areas showed varying degrees of damaged characteristics due to catastrophic fire. The entire damage was recorded in a 40-hectare region, while the vegetation on another 26 hectares of the reserve was damaged to a lesser extent. In total, 4,800 trees were eliminated, 73% of them belonged to rare and endangered species, such as Junipers (Juniperus spp.), Mt. Atlas mastic trees (Pistacia mutica), and Pitsunda pines (Pinus brutia var. pityusa). In the areas of severe disturbance, the soil surface was covered with a constant layer of ash two weeks after the fire.  As a result, there was an increase in the pH values, and the chemical composition of brown soil (Cambisol) was determined after the fire. There was also an increase in the organic carbon content and peroxidase activity. Catalase activity, which is sensitive to pyrogenic effects, decreased in all soil samples obtained at post-pyrogenic areas. The effect of fire on the biological state of soils may diminish over time, however, the restoration of the damaged ecosystems may take hundreds of years. The results of this study can be used in assessing the damage to ecosystems after the wildfires, as well as in developing methods to accelerate the restoration of soils after a fire impact.
Yield and water productivity variation of Boro rice with irrigation strategies and transplanting dates under climate change – a case study in south-western Bangladesh Tapos Kumar Acharjee; Mohammad Abdul Mojid; Kamonashish Haldar
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.58560

Abstract

Climate change has imposed major uncertainties on food and water security in Bangladesh. Understanding the recent changes in potential yield and water productivity of major crops is essential to formulate effective adaptation strategies under climate change conditions. This study assessed the yield and water productivity variation of dry season Boro rice with different irrigation regimes and transplanting dates over long-term (1985-2017) in a south-western District (Khulna) of Bangladesh using AquaCrop model. The evaluation of yield and water productivity was done for five transplanting dates (1st & 15th of December and January and 1st of February) and four irrigation strategies (fixed short- and long-interval irrigations, and measured irrigation with ‘low stress, low dose’ and ‘high stress, high dose’). Transplanting rice seedlings on 1st December results in 17% yield increase compared to transplanting on 1st January. There are significant (p£0.05) increasing trends of attainable biomass, grain yield and water productivity of Boro rice. The measured irrigation practices are superior to the traditional fixed irrigation practices. The ‘low stress, low dose’ irrigation strategy increases irrigation-water productivity and provides an opportunity to exploit the possible benefits of climate change. Adjustment of the irrigation strategy can reduce water usage without reducing the potential yield of Boro rice with an eventual increase in irrigation-water productivity, while adjustment of the transplanting date can increase potential yield with additional water usage. These findings would help develop suitable agricultural adaptation strategies for irrigated rice cultivation under climate change.
Soil carbon mineralization affected by hot water and ultrasound pretreatment Toan Nguyen-Sy; Van Thanh Thi Do; Dong Pham Duy
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.57554

Abstract

Paddy soil has attracted several studies; however, the effects of pretreatment on soil carbon mineralization remain unclear. This study aimed at validating the effects of soil pretreatment by performing anaerobic incubation of 15 soil samples before treating at room temperature water boiling at 80°C or ultrasound assist at 37Hz and combining (hereafter are control, hot water, ultrasound, mixed hot water, and mixed ultrasound treatments) conducted with three replications. Results showed that initial extracted carbohydrate and incubation extracted carbohydrate (Ini-ECH and Incu-ECH) ranged from 211 to 691 mg kg−1 and 229 to 961 mg kg−1, respectively, and reached the highest values with hot water. control, ultrasound, and mixed ultrasound treatments showed the lowest Ini-ECH (211–269 mg kg−1), while the lowest Incu-ECH was linked to both mixed soil treatments with similar amounts (229–264 mg kg−1). Conversely, soil carbon mineralization (generated extracted carbohydrates during anaerobic incubation, Min-ECH) was similar in control, hot water, and ultrasound treatments (ranged from 271 to 393 mg kg−1) but tended to be a negative value in mixed soil treatments. Therefore, we conclude that hot water and ultrasound pretreatments do not increase soil carbohydrate potential but likely promote carbon decomposition.
The influence of water field capacity and fertilizer combinations on tomato under intelligent drip in greenhouse Shaikh Abdullah Al Mamun Hossain; Lixue Wang; Liu Haisheng; Wei Chen
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.58328

Abstract

Tomato production is significant as the demand is increasing in time to meet food security and human nutrition as well. The purpose of the study was to investigate the effect of water and fertilizer application in greenhouse tomato growth index, yield and quality using an intelligent drip system to achieve improved yield by minimizing the fertigation. A randomized block design was used in ten treatments including control (CK-W4N4,K4) consisting four level (W1-65%, W2-75%, W3-85%, W4-100%) each of water field capacity and four-level Urea-Potash (N1,K1-245,490, N2,K2-350,700, N3,K3-455,910, N4,K4-80,100 kg ha-1) combinations. Data obtained were analyzed by a general linear model and developed a regression model for yield. The results showed, the highest tomato yield was 103.16 t ha-1 in T8-W3N2K1 significantly influenced by the treatment, which is found 2% greater compared to the CK (100.92 t ha-1). The highest leaf area index (5.21) was obtained with T7-W3N1K3 produced improved yield. The highest fruit weight (288.77 g fruit-1) and fruit diameter (85.33 mm) obtained with T2-W1N2K2 had no significant influence on tomato yield. The model delivered a paramount prediction (r2 = 0.82) of tomato yield. In conclusion, results showed the intelligent drip system could be used to minimize inputs to improve tomato production.
Comparison of land suitability class for endemic Coffea liberica Pinogu HP. acquired using different methods and recommendations for land management in Pinogu Plateau, Bone Bolango Regency, Indonesia Nurdin Nurdin; Fauzan Zakaria; Mohammad A Azis; Yunnita Rahim; Rival Rahman; Mahmud Kasim
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.56441

Abstract

Coffee is a national strategic commodity that contributes to Indonesia’s foreign exchange, but its productivity remains low due to cultivation on low potential land. This study aimed to determine the land suitability of endemic liberica coffee using two different methods and formulate recommendations for land management in Pinogu Plateau. Thirteen land units were surveyed, and soil samples were collected and analyzed in the laboratory to identify the land characteristics. Land suitability classes (LSCs) were compared by limiting factor and parametric methods. Analysis using the limiting factor method showed that the actual LSCs for liberica coffee consisted of moderately suitable (S2) and marginally suitable (S3) classes. Efforts for improvement could increase the potential of LSC to became very suitable (S1) and S2 classes. Meanwhile, the assessment with the parametric method indicated that the LSC consisted of S1, S2, and S3 classes. These results revealed that the parametric method provides more realistic land characteristics than the limiting factor method. Land management II  or the land that had a little limiting factor turned out to be more dominant with the recommendation of adding P and organic fertilizer.
Spore reproduction, glomalin content, and maize growth on mycorrhizal pot culture using acid mineral soil-based media Vita Ratri Cahyani; Dianing Wahyu Kinasih; Purwanto Purwanto; Jauhari Syamsiyah
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 1 (2022): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i1.59444

Abstract

Arbuscular mycorrhiza (AM) is known as multifunctional fungi for plant helpers under adverse conditions. However, studies that focused on the production strategy of AM biofertilizers with specific targets related to the soil limitations are limited. This study aimed to examine AM inocula from several sources using various compositions of acid mineral soil-based media and maize hosts in pot cultures to obtain effective AM inocula to handle the phosphor (P) limitations in acid mineral soils. Zeolite and Inceptisols were used as comparing media. The study utilized a completely randomized factorial design with two factors, namely C = media composition (C0: zeolite; C1: representative media of Alfisols; C2: typical media of a mixture of Alfisols, Oxisols, and Ultisols; C3: typical media with the addition of Bio-RP nutrition; C4: Inceptisols) and I = AM inoculum source (I0: without inoculum; I1: inoculum from Alfisols; I2: mixed inoculum from Alfisols, Ultisols, and Oxisols; I3: mixed inoculum from eight soil types), and six replications per treatment combination. The AM cultures on acid mineral soil-based media, which yielded the highest mycorrhizal infection, spore reproduction, and glomalin content, were C1I2 and C3I2, while the highest maize growth and P concentration were obtained with C1I1, CII2, C2I1, and C3I2. Compared to all the treatments, C1I1 and C1I2 are the superior AM cultures. Further study is necessary to confirm the effectiveness of AM cultures.

Page 1 of 2 | Total Record : 12