Godlief F. Neonufa
Department Of Agriculture Product Technology Universitas Kristen Artha Wacana, Kupang 85000

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Engineering and Technological Sciences

Catalytic and Thermal Decarboxylation of Mg-Zn Basic Soap to Produce Drop-in Fuel in Diesel Boiling Ranges Neonufa, Godlief F.; Soerawidjaja, Tatang H.; Prakoso, Tirto
Journal of Engineering and Technological Sciences Vol 49, No 5 (2017)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (829.045 KB) | DOI: 10.5614/j.eng.technol.sci.2017.49.5.2

Abstract

Fatty acid deoxygenation is a method for producing renewable hydrocarbon fuels such as green diesel, jet biofuel and biogasoline. In the present commercial method, deoxygenation is directly applied to vegetable oils through liquid phase hydrotreatment. This method is expensive because it consumes a large amount of hydrogen and requires severe operating conditions. The objective of this study was the production of a diesel-like hydrocarbon fuel that can be considered as drop-in replacement for petroleum-based diesel fuels, by catalytic thermal decarboxylation of Mg-Zn basic soap. In particular, this study investigated the decarboxylation of Mg-Zn basic soap at low temperature and pressure, without external supply of hydrogen. The Mg-Zn basic soap (9/1 mole ratio of Mg/Zn) was derived from palm stearin and decarboxylated at 350 °C and atmospheric pressure for 5 hours. The basic soap effectively decarboxylated, yielding a diesel-like hydrocarbon fuel with a liquid product yield of 62%-weight. The resulting hydrocarbon product is a complex mixture consisting of normal paraffins in the range of carbon chain length C8–C19, iso-paraffins and various olefin products.
Catalytic and Thermal Decarboxylation of Mg-Zn Basic Soap to Produce Drop-in Fuel in Diesel Boiling Ranges Godlief F. Neonufa; Tatang H. Soerawidjaja; Tirto Prakoso
Journal of Engineering and Technological Sciences Vol. 49 No. 5 (2017)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2017.49.5.2

Abstract

Fatty acid deoxygenation is a method for producing renewable hydrocarbon fuels such as green diesel, jet biofuel and biogasoline. In the present commercial method, deoxygenation is directly applied to vegetable oils through liquid phase hydrotreatment. This method is expensive because it consumes a large amount of hydrogen and requires severe operating conditions. The objective of this study was the production of a diesel-like hydrocarbon fuel that can be considered as drop-in replacement for petroleum-based diesel fuels, by catalytic thermal decarboxylation of Mg-Zn basic soap. In particular, this study investigated the decarboxylation of Mg-Zn basic soap at low temperature and pressure, without external supply of hydrogen. The Mg-Zn basic soap (9/1 mole ratio of Mg/Zn) was derived from palm stearin and decarboxylated at 350 °C and atmospheric pressure for 5 hours. The basic soap effectively decarboxylated, yielding a diesel-like hydrocarbon fuel with a liquid product yield of 62%-weight. The resulting hydrocarbon product is a complex mixture consisting of normal paraffins in the range of carbon chain length C8"“C19, iso-paraffins and various olefin products.
Comparison of Liquid Product Characteristics of PFAD Metal Soap Decarboxylation by Batch and Continuous Process Godlief F. Neonufa; Lidya Elizabeth; Endar Puspawiningtiyas; Meiti Pratiwi; Astri Nur Istyami; Ronny Purwadi; Tatang H. Soerawidjaja
Journal of Engineering and Technological Sciences Vol. 53 No. 3 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.3.11

Abstract

Well-run continuous processes will benefit the industrial world in the future. This paper investigated the effect of batch and continuous processes on metal basic soap decarboxylation in terms of the liquid product characteristics. The metal soap used in the process was made from palm fatty acid distillate (PFAD) reacted with mixed metal oxides of Zn, Mg, and Ca. While the batch decarboxylation was carried out in a batch reactor at 400 °C for 5 hours, the continuous decarboxylation was conducted at 400 °C with a feed flow rate of 3.75 gr/minutes. Theoretically, the yield of batch decarboxylation is 76.6 wt% while the yield of continuous decarboxylation is 73.37 wt%. The liquid product was fractionated to separate short-chain hydrocarbon of C7-C10 (gasoline fractions) from medium- to long-chain hydrocarbons, or greater than C11 (green diesel fraction). The result showed that the alkane content from the batch process was higher than from the continuous process, whereas the continuous process produced more ketone products compared to the batch process. Furthermore, the GC-FID analysis showed a similar amount of total hydrocarbon (alkane, iso-alkane, and alkene) in both the batch and the continuous process.