Riyanto, Teguh
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Biofuels Production from Catalytic Cracking of Palm Oil Using Modified HY Zeolite Catalysts over A Continuous Fixed Bed Catalytic Reactor Istadi, I.; Riyanto, Teguh; Buchori, Luqman; Anggoro, Didi D.; Pakpahan, Andre W. S.; Pakpahan, Agnes J.
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33281

Abstract

The increase in energy demand led to the challenging of alternative fuel development. Biofuels from palm oil through catalytic cracking appear as a promising alternative fuel. In this study, biofuel was produced from palm oil through catalytic cracking using the modified HY zeolite catalysts. The Ni and Co metals were impregnated on the HY catalyst through the wet-impregnation method. The catalysts were characterized using X-ray fluorescence, X-ray diffraction, Brunauer–Emmett–Teller (BET), Pyridine-probed Fourier-transform infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) methods. The biofuels product obtained was analyzed using a gas chromatography-mass spectrometry (GC-MS) method to determine its composition. The metal impregnation on the HY catalyst could modify the acid site composition (Lewis and Brønsted acid sites), which had significant roles in the palm oil cracking to biofuels. Ni impregnation on HY zeolite led to the high cracking activity, while the Co impregnation led to the high deoxygenation activity. Interestingly, the co-impregnation of Ni and Co on HY catalyst could increase the catalyst activity in cracking and deoxygenation reactions. The yield of biofuels could be increased from 37.32% to 40.00% by using the modified HY catalyst. Furthermore, the selectivity of gasoline could be achieved up to 11.79%. The Ni and Co metals impregnation on HY zeolite has a promising result on both the cracking and deoxygenation process of palm oil to biofuels due to the role of each metal. This finding is valuable for further catalyst development, especially on bifunctional catalyst development for palm oil conversion to biofuels.
Effect of Temperature on Plasma-Assisted Catalytic Cracking of Palm Oil into Biofuels Istadi, I.; Riyanto, Teguh; Buchori, Luqman; Anggoro, Didi Dwi; Saputra, Roni Ade; Muhamad, Theobroma Guntur
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.107-112

Abstract

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved
Reactivation of the Spent Residue Fluid Catalytic Cracking (RFCC) Catalyst through Acid Treatment for Palm Oil Cracking to Biofuels Amalia, Rahma; Riyanto, Teguh; Istadi, Istadi
TEKNIK Vol. 42, No. 2 (2021): August 2021
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v42i2.39642

Abstract

This work discusses the treated spent Residue Fluid Catalytic Cracking (RFCC) catalysts using sulfuric or citric acids to examine the impact of acid treatment on the catalyst physicochemical properties and structural characteristics. The catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and Brunauer−Emmett−Teller-Barrett−Joyner−Halenda (BET-BJH) methods. The catalytsts were performed in a continuous fixed-bed reactor for catalytic cracking of palm oil. Changes of the catalyst characteristics and catalytic performance testing of the catalyst after the acid treatment for palm oil cracking process were discussed. It was found that the acid treatment on the spent RFCC catalyst can increase the surface area and pore volume of catalysts as well as the crystallinity. The closed pores in the spent RFCC are opened by acid treatment by eliminating heavy metals. Concerning to the catalytic performance, the acid-treated catalysts had better performance than the non-treated catalyst, which could increase selectivity of the kerosene-diesel range fraction from 47.89% to 55.41%. It was interested, since the non-treated catalyst could not produce gasoline fraction, while the acid-treated catalsysts could produce gasoline fraction at selectivity range of 0.57 – 0.84%. It was suggested that both sulfuric or citric acids treatment could increase the cracking performance of spent RFCC catalyst by shifting the product to lower hydrocarbons.