Lim, Ocktaeck
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition Putrasari, Yanuandri; Praptijanto, Achmad; Nur, Arifin; Santoso, Widodo Budi; Pratama, Mulia; Dimyani, Ahmad; Suherman, Suherman; Wahono, Bambang; Wardana, Muhammad Khristamto Aditya; Lim, Ocktaeck
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 2 (2018)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (177.288 KB) | DOI: 10.14203/j.mev.2018.v9.49-56

Abstract

Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.
A study effects of injection pressure and wall temperature on the mixing process of NOx and NH3 in Selective Catalytic Reduction system Aditya Wardana, Muhammad Khristamto; Lim, Ocktaeck
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 11, No 1 (2020)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.45-54

Abstract

Diesel engines are commonly used for public transportation on-road and off-road applications. Growth production of the diesel engine is very significant from year to year. Nitride Oxide (NOx) from diesel engine was one of the major sources of air pollution. Selective Catalytic Reduction (SCR) has been successfully used to reduce NOx from a diesel engine with a chemical reaction from ammonia (NH3). The mixing reaction between NOx and NH3 reaction can produce steam (H2O) and Nitrogen (N2). However, ammonia uniformity pattern usually not homogenization and the ammonia was difficult to mix with NOx. The constant air flows incomplete to assist the spray injector to spread NH3 to all corners of SCR. The impact study of turbulent phenomena and standard k-epsilon Low-Reynolds Number model to the mixing process in the SCR system using STARCCM+. The simulation studies are conducted under different pressure (4 to 6 bars), the injection rate (0.04 g/s) and temperature (338 K – 553 K) and the high pressure and high velocity magnitude creating turbulent swirl flow. The ammonia decomposition process and mixing process with NOx were investigated using a box with optical access. The simulation and numerical study results validated using back pressure value and the distribution of NOx concentration value from the catalyst outlet. The wall temperature will increase the urea evaporation to generate ammonia and gas pressure will increase the mixing process and chemical process in the SCR system. These reactions enable to optimize the SCR system technology which eventually able to reduce the NOx quantity from a diesel engine.