Arsi, Primandani
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PERBANDINGAN METODE SUPPORT VECTOR MACHINE DAN DECISION TREE UNTUK ANALISIS SENTIMEN REVIEW KOMENTAR PADA APLIKASI TRANSPORTASI ONLINE Rokhman, Khoirul Abbi; Berlilana, Berlilana; Arsi, Primandani
Journal of Information System Management (JOISM) Vol. 2 No. 2 (2021): Januari
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (871.264 KB) | DOI: 10.24076/joism.2021v3i1.341

Abstract

Secara umum transportasi digunakan untuk memudahkan manusia melakukan aktivitas sehari-hari. Saat ini, transportasi tidak hanya terdapat secara konvensional saja namun berkembang dengan adanya transportasi berbasis online yang harganya lebih terjangkau dan lebih praktis. Gojek Adalah salah satu aplikasi trasportasi online yang memiliki pengguna bisa dikatakan banyak di Indonesia. Namun dalam system ini pasti memliki banyak kekurangan yang dirasakan penggunanya. Dengan menganalisis kekurangan dari aplikasi perusahaan dapat mengetahui kekurangan dari aplikasi dan bagaimana cara memperbaikinya. Tujuan dari penelitian ini yaitu untuk melakukan analisis sentiment dengan menggunakan data ulasan yang terdapat pada Google Play guna mengetahui perbandingan keakurasian antara metode Support Vector Machine untuk mengklasifikasikan ulasan dari dua ketegori yaitu ulasan positif dan negative. Kemudian dibandingkan dengan metode Decision Tree. Melalui klasifikasi diperoleh hasil akurasi sebesar 90.20% untuk metode Support Vector Machine sedangkan 89.80% untuk metode Decision Tree. Jadi bisa disimpulkan untuk metode Support Vector Machine nilai akurasinya lebih tinggi dibandingkan metode Decision Tree.
Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM) Arsi, Primandani; Waluyo, Retno
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8, No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813944

Abstract

Dewasa ini, media sosial berkembang pesat di internet, salah satu yang banyak digemari adalah Twitter. Berbagai topik ramai diperbincangkan di Twitter mulai dari ekonomi, politik, sosial, budaya, hukum dan lain-lain. Salah satu topik yang ramai diperbincangkan di Twitter adalah terkait isu pemindahan ibu kota Indonesia. Namun dibalik hal tersebut terdapat kontroversi dari  pihak yang merasa  pro dan kontra, masing-masing memiiki sudut pandang yang berbeda.  Hal ini menyebabkan munculnya fenomena perdebatan khususnya di Twitter yang sebenarnya menunjukkan perhatian kolektif mengenai wacana publik tersebut. Analisis sentimen adalah proses mengekstraksi, memahami dan mengolah data berupa teks yang tidak terstruktur secara otomatis guna mendapatkan informasi sentimen yang terdapat pada sebuah kalimat pendapat atau opini. Dalam penerapan analisis sentimen menggunakan metode machine learning terdapat beberapa metode yang sering digunakan. Dalam penelitian ini diusulkan metode Support Vector Machine (SVM) untuk diterapkan pada tweets topik pemindahan ibu kota Indonesia untuk tujuan klasifikasi kelas sentimen pada media sosial twitter. Teknis klasifikasi  dilakukan dengan cara mengklasifikasikan menjadi 2 kelas yakni positif dan negatif. Berdasarkan hasil pengujian yang dilakukan terhadap tweets sentimen pemindahan ibu kota dari media sosial twitter sebanyak 1.236 tweets (404 positif dan 832 negatif) menggunakan SVM diperoleh akurasi =96,68%, precision=95.82%, recall=94.04% dan AUC = 0,979. AbstractToday, social media is growing fast on the internet.One of the most popular social media is Twitter. Many topics are discussed on Twitter such as economic, politic, social, culture, and law. One of the hot topics discussed on Twitter is the issue of relocating Indonesia's capital city. However, there is controversy from supporters and opponents. They have different views. This issue leads to a phenomenon of debate on Twitter that actually shows a collective concern about the public discourse. Sentiment analysis is a process of extracting, understanding and processing unstructured data to get sentiment information which is found in an opinion sentence. Application of sentiment analysis using machine learning methods shows that there are several methods that are often used. In this study, the Support Vector Machine (SVM) method is proposed to be applied to tweets on the topic of relocating Indonesia's capital city for sentiment classification on social media twitter. The classification technique is carried out into 2 classes, namely positive and negative. Based on testing on the sentiment of relocating Indonesia's capital city from social media twitter from 1,116 tweets (404 positive and 832 negative) using SVM obtained accuracy = 96.68%, precision = 95.82%, recall = 94.04% and AUC = 0.979.