Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : ILKOM Jurnal Ilmiah

PERANCANGAN SISTEM DIAGONOSA PENYAKIT HEPATITIS MENGGUNAKAN METODE KNN Ramadhani, Risky Aswi; Helilintar, Risa; Rochana, Siti
ILKOM Jurnal Ilmiah Vol 9, No 2 (2017)
Publisher : Program Studi Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1126.469 KB)

Abstract

Indonesia merupakan negara yang terletak di khatulistiwa, sehingga Indonesia beriklim tropis. Negara yang beriklim tropis sering mendapatkan permasalahan yaitu adanya penyakit menular seperti Hepatitis. Pada saat ini di dunia diperkirakan terdapat kira-kira 350 juta orang pengidap (carier) HBsAg, sedangkan di Indonesia Penderita Hepatitis mencapai 2,9 juta. Untuk menyelesaikan persoalan ini perlu dilakukan pengobatan dan pencegahan. Penelitian ini akan membuat sistem yang mengenali gejala penderita Hepatitis menggunakan metode K-NEAREST NEIGHBOR. Untuk mendiagnosa digunakan beberapa variabel yaitu muntah minimal tiga kali, demam 3 hari berturut-turut, warna mata kuning, BAK kuning teh, badan lemas, nafsu makan menurun, dan nyeri perut atas.  Hasil diagnosa system ditunjukan pada data testing ini pasien no 246 memiliki jarak paling dekat dengan pasien no 241, pasien 241 positiv menderita hepatitis jadi dapat diputuskan bahwa pasien 246 menderita hepatitis.
PERANCANGAN SISTEM DIAGONOSA PENYAKIT HEPATITIS MENGGUNAKAN METODE KNN Risky Aswi Ramadhani; Risa Helilintar; Siti Rochana
ILKOM Jurnal Ilmiah Vol 9, No 2 (2017)
Publisher : Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v9i2.129.145-152

Abstract

Indonesia merupakan negara yang terletak di khatulistiwa, sehingga Indonesia beriklim tropis. Negara yang beriklim tropis sering mendapatkan permasalahan yaitu adanya penyakit menular seperti Hepatitis. Pada saat ini di dunia diperkirakan terdapat kira-kira 350 juta orang pengidap (carier) HBsAg, sedangkan di Indonesia Penderita Hepatitis mencapai 2,9 juta. Untuk menyelesaikan persoalan ini perlu dilakukan pengobatan dan pencegahan. Penelitian ini akan membuat sistem yang mengenali gejala penderita Hepatitis menggunakan metode K-NEAREST NEIGHBOR. Untuk mendiagnosa digunakan beberapa variabel yaitu muntah minimal tiga kali, demam 3 hari berturut-turut, warna mata kuning, BAK kuning teh, badan lemas, nafsu makan menurun, dan nyeri perut atas.  Hasil diagnosa system ditunjukan pada data testing ini pasien no 246 memiliki jarak paling dekat dengan pasien no 241, pasien 241 positiv menderita hepatitis jadi dapat diputuskan bahwa pasien 246 menderita hepatitis.
Classification of Dog and Cat Images using the CNN Method Teguh Adriyanto; risky aswi ramadhani; Risa Helilintar; Aidina Ristyawan
ILKOM Jurnal Ilmiah Vol 14, No 3 (2022)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v14i3.1116.203-208

Abstract

Blind people can be defined as those people who are unable to see objects or pictures around them with their eyes. This inability becomes an issue for them when dealing with objects or images in front of them. These problems lead to the novelty of this study that is to recognize objects or images around blind people with the CNN algorithm. Dogs and cats were used as objects in this study. These object recognitions used Deep Learning, a relatively new science in the field of machine learning. Deep learning works like the human brain's ability to recognize an object. In this study, the objects that were used were pictures of a dog and a cat. This study used 3 types of data, namely training, validation, and testing data. The data training consisted of dog data with a total of 1000 images and cat data with a total of 1000 images. Data validation consisted of 500 dog data  and 500 cat data. The CCN architecture employed 3 convolution layers. The layer was convolution 1 using 16 filters of kernel size 3x3, the second convolution using 32 filters of  kernel size 3x3 and the third using 64 filters of kernel size 3x3. While the data testing consisted of 51dog data and 27 cat data. The method used to analyze the image was CNN. The input was an image with a size of 150x150 pixels with 3 channels, namely R, G, and B. This classification went through a performance test with the Confusion Matrix and it obtained 45% precision, 45% recall and 45% f1-score. From these results it can be concluded that the accuracy values should be improved.