Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Capability of Equisetum ramosissium and Typha angustifolia as Phytoremediation Agents to Reduce Nitrate-Phosphate Pollutants and Prevent Microcystis Blooming in Fresh Water Ecosystem Vidayanti, Viky; Retnaningdyah, Catur; Soeharjono, Soeharjono
Journal of Tropical Life Science Vol 2, No 3 (2012)
Publisher : Journal of Tropical Life Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The aim of this study is to find out the kind of hydromacrophyte composition having the highest capability to reduce nitrate-phosphate pollutant and Microcystis growth in phytoremediation media using Equisetum ramosissium, Typha angustifolia and the combination of both. Microcystis were obtained from Sutami reservoir, then being inoculated in a media grown by hydromacrophytes (E. ramosissium, T. angustifolia and both of the hydromacrophytes) in the batch culture system. The number of Microcystis was counted every day within fifteen days. Abiotic factors were observe, including the concentration of nitrate using brucine-colorimetry method and orthophosphate (dissolved phosphate) using stannous chloride-colorimetry method on day 0, 6th, 12th and 15th. The growth rate of Microcystis carrying capacity and orthophosphate-nitrate levels among treatments were analysed by ANOVA test. The results showed that E. ramosissium and T. angustifolia in mono and polyculture techniques had similar potentiality to reduce the nitrate and ortophosphate. The concentrations of nitrate and orthophosphate decreased over 70 % in the 6th day after incubation. All of the treatments were able to reduce the carrying capacity of Microcystis up to 46 % , but the growth rates were similar in all media, that is, around 97-170 cells/L/day. Keywords: Equisetum ramosissium, Microcystis, nitrate, phosphate, Typha angustifolia
The Role of Phytochelatin Synthase in Phytoremediation Agent: Structural Conservation of Phytochelatin (PC) Synthase to Maintain Its Activity as Heavy Metal Detoxification in Plant Vidayanti, Viky; Permatasari, Galuh Wening
Bioinformatics and Biomedical Research Journal Vol. 3 No. 2 (2020): Volume 3 issue 2
Publisher : Future Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Phytochelatin (PC) Enzyme has crucial role in heavy metal detoxification and homeostasis in plants. This study aimed to evaluate the genetic variation of PC synthase related to its activity based on structural comparison. We evaluated PC genes and protein sequences from 6 plants namely, Brassica sp., Amaranthus sp., Noccaea sp., Arabidopsis sp., Nicotiana sp., and Pteris sp. All sequences were aligned based on CLUSTALW matrix for DN sequences and MUSCLE algorithm for protein sequences. Data were clustered using MEGA Software for similarity clustering. Selected data were further modeled using SWISSMODEL to evaluate the 3D-structural analysis based on homology modeling. Thus, all protein models were superimposed and evaluated the structure comparison based on RMSD data. The result showed that genetic variation of PC gene is high among species. But it is clustered for the same species has similar sequence. In addition, protein sequences also showed the high diversity among species and it is still clustered based on their genus. RMSD data showed that PC synthase from 6 plant has similar structure and tend to conserved even there is genetic variation or amino acid modification. We concluded that structural of PC gene is more conserved than its sequences. It is important to keep its function among species.