Claim Missing Document
Check
Articles

Found 4 Documents
Search

Review of Switched Reluctance Motor Control for Acoustic Noise and Vibration Reduction Furqani, Jihad; Purwadi, Agus
http://dx.doi.org/10.31427/IJSTT.2018.1.2.4
Publisher : Unijourn Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Switched Reluctance Motor (SRM) is one of the candidates for substituting permanent magnet motor in Hybrid Electric Vehicle (HEV) application. Compared to permanent magnet motor, SRM is relatively low cost, robust, high reliability, and possible for high-temperature operation because of the absence of permanent magnet. One significant problem in SRM is the high acoustic noise and vibration. The vibration in SRM is caused by the radial forces acting at the stator teeth. Because of the saliency pole configuration in SRM, vibration is prominent. Many studies tried to reduce acoustic noise and vibration in SRM. In this paper, several controls for acoustic noise and vibration reduction are shown. The acoustic noise and vibration reduction from the experiment are also compared in each method.
A current control method for bidirectional multiphase DC-DC boost-buck converter Gifari Iswandi Hasyim; Sulistyo Wijanarko; Jihad Furqani; Arwindra Rizqiawan; Pekik Argo Dahono
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i3.pp2363-2377

Abstract

In the future, more and more electric vehicle (EV) batteries are connected to the direct current (DC) microgrid. Depending on the battery state of charge, the battery voltage can be higher or lower than the DC microgrid voltage. A converter that is aimed to fulfil such function must be capable of working in both charging and discharging regardless the voltage level of the battery and DC microgrid. Battery performance degradation due to ripple current entering the battery is also a concern. In this paper, a converter that can minimize ripple current that entering battery and operate in two power-flow directions regardless of battery and DC microgrid voltage level is presented. A current control method for this kind of converter was proposed. Experiment on a prototype was conducted to prove the proposed converter current control method.
Simplified cascade multiphase DC-DC buck power converter for low voltage large current applications: part II --- output current controller Nungky Prameswari; Anand Bannet Ganesen; Falah Kharisma Nuraziz; Jihad Furqani; Arwindra Rizqiawan; Pekik Argo Dahono
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i4.pp2273-2283

Abstract

This paper proposes a control method for new simplified cascade multiphase direct current-direct current (DC-DC) buck power converters used for low-voltage large-current applications such as cathodic protection. To control the proposed converter, a proportional-integral (PI) controller is used to regulate the output current of the converter. The control scheme analysis is carried out by linearizing the small-signal model of the proposed converter to form the output current transfer functions. This transfer function will be analyzed by using phase and gain margin approach to obtain the control parameters (Kp, Ki, and Ti). Simulation and experiment results are included to show the validity of the proposed concept.
New bidirectional step-up DC-DC converter derived from buck- boost DC-DC converter Ridha D. N. Aditama; Naqita Ramadhani; Jihad Furqani; Arwindra Rizqiawan; Pekik Argo Dahono
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1699-1707

Abstract

This paper proposes a new bidirectional step-up DC-DC converter, namely modified buck-boost DC-DC converter. The proposed DC-DC converter was derived from the conventional buck-boost DC-DC converter. Output voltage expression of the proposed converter was derived by considering the voltage drops across inductors and switching devices. The results have shown that with the same parameter of input LC filter, proposed DC-DC converter has lower conduction losses. Moreover, the proposed DC-DC converter has lower rated voltage of filter capacitor than the conventional boost DC-DC converter which lead to cost efficiency. Finally, a scaled-down prototype of laboratory experiment was used to verify its theoretical analysis.