Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Practical Computer Science (JPCS)

Optimalisasi Support Vector Machine Menggunakan Particle Swarm Optimization Untuk Mendiagnosa Penyakit Kanker Payudara Ari Maulana; Agung Nugroho; Ikhsan Romli
Journal of Practical Computer Science Vol 1 No 2 (2021): November 2021
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (902.564 KB) | DOI: 10.37366/jpcs.v1i2.940

Abstract

Kanker payudara adalah kanker yang paling umum pada wanita dan penyebab utama kematian kanker di seluruh dunia. Klasifikasi dalam data mining merupakan dua bentuk proses analisis data yang digunakan untuk mengekstraksi model yang menggambarkan kelas data atau untuk memprediksi tren data di masa depan. Support Vector Machine (SVM) dikenal juga dengan support vector network yang merupakan metode supervised terkait dengan learning algorithm untuk analisa pola data yang digunakan untuk klasifikasi dan regresi. Seleksi fitur banyak digunakan untuk mengatasi fitur yang tidak relevan dan berlebihan. Seleksi fitur menyederhanakan sekumpulan data dengan mengurangi dimensi dan mengidentifikasi fitur yang relevan tanpa mengurangi akurasi prediksi. Penelitian ini mengguanakan algoritma Support Vector Machine dengan Particle Sarm Optimization untuk mendiagnosa penyakit kanker payudara. Hasil dari penelitian ini adalah accuracy sebesar 97.61%, precision sebesar 99.21% dan recall 96.94%. Penggunaan Particle Swarm Optimization bekerja secara efektif dalam meningkatkan nilai akurasi. Kata kunci: Kanker payudara, klasifikasi, support vector machine, particle swarm optimizatiom.
Analisis Sentimen Tentang Mobil Listrik Dengan Metode Support Vector Machine Dan Feature Selection Particle Swarm Optimization Ahmad Santoso; Agung Nugroho; Aswan S Sunge
Journal of Practical Computer Science Vol. 2 No. 1 (2022): Mei 2022
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37366/jpcs.v2i1.1084

Abstract

Analisis sentimen twitter merupakan teknik untuk mengidentifikasi sentimen atau pendapat dalam tweet dan kemudian mengategorikannya ke dalam tweet positif atau tweet negatif salah satu topik yang dibahas pada social media twitter adalah mobil listrik, mobil listrik memiliki beberapa kelebihan dibandingkan dengan mobil bahan bakar fosil. Mobil listrik ini menuai banyak komentar dari masyarakat sehingga menimbulkan pro dan kontra di sosial media twitter. Penelitian ini dilakukan tujuannya untuk mengetahui pendapat masyarakat terhadap mobil listrik. Apakah pendapat tersebut lebih mengarah ke positif atau negatif dan untuk mengetahui nilai accuracy, AUC dari penggunaan metode Support Vector Machine dan feature selection Particle Swarm Optimization pada Software RapidMiner Studio. di dalam penelitian ini dapat diketahui bahwa 94,25% pengguna twitter setuju dan 5,75% pengguna twitter tidak setuju terhadap kehadiran mobil listrik. Penggunaan feature selection Particle Swarm Optimization pada metode support vector machine untuk menganalisis sentimen masyarakat mengenai mobil listrik dapat meningkatkan nilai accuracy dan AUC. Dimana nilai accuracy yang awalnya sebesar 82,51% menjadi 86,07%, terjadi kenaikan sebesar 3,56%. Sedangkan nilai AUC yang awalnya sebesar 0,844 menjadi 0,862 terjadi kenaikan sebesar 2,13%. Kata kunci: Analisis Sentimen, Text Mining, Support Vector Machine, Particle Swarm Optimization, Mobil Listrik.