Claim Missing Document
Check
Articles

Found 5 Documents
Search

Implementation of Line Follower Robot based Microcontroller ATMega32A Latif, Abdul; Agus Widodo, Hendro; Rahim, Robbi; Kunal, Kunal
Journal of Robotics and Control (JRC) Vol 1, No 3 (2020): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1316

Abstract

The development of technology in the field of robotics is very fast, but in the eastern regions of Indonesia, namely the development of the development has not yet felt the impact. Especially in the university's electrical laboratory Musamus Merauke learning media devices for microcontrollers are also not yet available, therefore the author wants to pioneer by implementing the simplest robot design, the line follower robot, where the robot only goes along the lines. This study uses an experimental method, by conducting a research process based on sequences, namely: needs analysis, mechanical chart design, electronic part design and control program design, manufacturing, and testing. The line follower robot based on ATmega32A microcontroller has been tested and the results show that the line follower robot can walk following the black line on the white floor and can display the situation on the LCD. But this line follower robot still has shortcomings in the line sensor sensitivity process depending on a certain speed. At speeds of 90-150 rpm the line follower robot can follow the path, while more than 150 rpm the robot is not able to follow the path.
Motor DC PID System Regulator for Mini Conveyor Drive Based-on Matlab Latif, Abdul; Zuhri Arfianto, Afif; Agus Widodo, Hendro; Rahim, Robbi; T.Helmy, Elsayed
Journal of Robotics and Control (JRC) Vol 1, No 6 (2020): November
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1636

Abstract

The goal of the research was to develop a Proportional Integral Derivative (PID) control DC motor system as a Matlab-based driver mini conveyor to discover how to regulate speed on an actual mini conveyor where certain factors that impact the research are not considered 0. The hardware configuration of the mini conveyor used hollow steel as a frame and two copies of the roller belt for the stretch belt conveyor. The PID control system used an empirical approach to get the DC motor's response system to determine the best fit of proportional gain, integral gain and derivative gain, and then implement those PID control systems using Matlab and Arduino as the tools for data acquisition. The speed sensor (Rotary Encoder) was mounted on the roller belt to accurately gain read speed. This sensor will submit data on every increasing in PWM to accurately measure the speed and control speed at the same time, based on the set points. The consequence of this work was the proportional gain values = 0.94624747, the Integral gain = 51.4023958 and the derivative gain = 0.01941504. The PID control, designed to monitor the response of motor DC speed on this research, had successfully reached set point value and decreased steady state error from 47.16 percent to 1.015188 percent (unloaded) and 2.2020751 percent (loaded) on the real response device.
Temperature and Humidity Controlling System for Baby Incubator Latif, Abdul; Agus Widodo, Hendro; Andri Atmoko, Rachmad; Nguyen Phong, Thanh; T.Helmy, Elsayed
Journal of Robotics and Control (JRC) Vol 2, No 3 (2021): May (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Baby incubator is very important to keep the newborn’s body temperature especially for premature babies. The research aimed to design a baby incubator with controlled temperature and humidity. The incubator is designed to have a length of 60 cm, a width of 40 cm, and a height of 30 cm. System of baby incubator will automatically turn on or turn off the fan and or heating in accordance with the normal range of temperature and humidity in the incubator. The normal limits of temperature used is 33°C to 35°C. While the normal limits of air humidity in the incubator used is between 40% and 60%. Data acquisition system consists of temperature and humidity sensor, microcontroller ATmega8535, fan, heater, and LCD. LCD is used to display the results of measurements of temperature and humidity. Heater is used to regulate the temperature in the incubator. While fan is used to regulate the humidity in the incubator. Test results show that the heater will turn on if the temperature is below the limits of 33°C. While the fan will turn on if the humidity is above 60%
The Design of Digital Heart Rate Meter Using Microcontroller Padang Tunggal, Tatiya; Asta Juliani, Shela; Agus Widodo, Hendro; Andri Atmoko, Rachmad; Thanh Nguyen, Phong
Journal of Robotics and Control (JRC) Vol 1, No 5 (2020): September
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1529

Abstract

Cardiac tests generally use an electrocardiograph, the results of which are used by medical teams to diagnose heart conditions. Individual ECG examination is held in a health care institution so that it cannot be held independently, considering the high costs and the need for analysis by a specialist.  It is, therefore, necessary to have a functional and portable device to detect heart rate. The heart rate measuring device, equipped with a finger sensor, was designed for adults. The 15-second measurement interval showed the heart rate in one minute and the results were shown on an LCD. The minimum system circuit used ATMega 16.
Gas Pressure Measurement Device and Medical Vacuum Design Padang Tunggal, Tatiya; Sanjaya, Alfana; Agus Widodo, Hendro; Kunal, Kunal; Thanh Nguyen, Phong
Journal of Robotics and Control (JRC) Vol 1, No 2 (2020): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1208

Abstract

Two methods are used in a digital pressure meter available in the market, namely positive pressure, and negative pressure. The positive one is used to measure the air pressure on a sphygmomanometer and medical gas pressure at an outlet in the treatment room so that operators can easily check medical gas pressure for the safety of the patient, or they can routinely check to find out how much pressure of the medical gas. Based on the background, the research aimed to design a digital pressure meter equipped with a medical gas measurement mode so that the device can be used to calibrate the sphygmomanometer, suction pump, and measure the medical gas pressure available at the medical gas outlet in each treatment room.