Claim Missing Document
Check
Articles

Found 5 Documents
Search

Seleksi Mikroba dan Nutrisi yang Berpotensi Menghasilkan Biosurfaktan untuk MEOR Sari, Cut Nanda; Kussuryani, Yanni
Lembaran publikasi minyak dan gas bumi Vol 47, No 2 (2013)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (653.248 KB) | DOI: 10.29017/LPMGB.47.2.222

Abstract

Biosurfaktan merupakan surfaktan yang dihasilkan oleh mikroba dari golongan bakteri hidrokarbonoklastik yang memiliki kemampuan menurunkan tegangan antar muka. Faktor keberhasilan dalam produksi biosurfaktan ditentukan dari jenis mikroba dan nutrisi yang digunakan. Kegiatan penelitian ini terdiri atas empat tahapan yaitu aktivasi dan kultivasi mikroba, seleksi mikroba penghasil biosurfaktan, kurva pertumbuhan mikroba, seleksi nutrisi. Aktivasi dan kultivasi mikroba dilakukan dalam tiga tahapan dengan masa inkubasi masing-masing tahapan yaitu 37oC selama 24 jam. Hasil seleksi mikroba penghasil biosurfaktan diperoleh tiga jenis mikroba dari tujuh mikroba yang diuji, berdasarkan indikasi luasnya zona lisis yang terbentuk pada media agar darah yaitu, BLCC B-3, BLCC B-4 dan BLCC B-5. Hasil uji lanjut terhadap ketiga mikroba tersebut pada media minyak dengan mengukur tegangan antar muka (IFT), menghasilkan dua mikroba dengan nilai IFT yang terendah yaitu BLCC B-3 dan BLCC B-5. Hasil screening nutrisi berdasarkan pengukuran Tegangan Antar Muka (IFT), Viskositas, Total Plate Count (TPC), dan pH, menunjukkan media BC-4 dan media PA-4 mendukung aktivitas mikroba dalam memproduksi biosurfaktan. Biosurfactant is a surfactant derived from hydrocarbonoclastic bacteria which are capable to reduce surface tension. The successful biosurfactant productions are determined by nutrition and microbial species. This research consists of 4 main steps: activation and cultivation of microbes, microbial growth curves, screening of surfactant producing bacteria, and screening of nutrition. Microbial activation and cultivation conducted in 3 sequential cultivation in 24 hours incubation time at 37oC. Screening of surfactant producing bacteria from 7 microbial isolates obtained 3 isolates which show positive result based on diameter of hemolytic area on blood agar. They are BLCC B-3, BLCC B-4 and BLCC B-5. The interfacial tension (IFT) examination result from these 3 isolates showed that BLCC B-3 and BLCC B-5 had the lowest IFT value. The result of nutrition screening based on IFT, viscosity, Total Plate Count, and pH show that BC-4 and PA-4 media are the best composition of media that support the microbes in producing surfactants.
KONSTRUKSI DAN EKSPRESI REKOMBINAN TUNGGAL PEPTIDA SURFAKTAN (SINGLE SUPEL CONSTRUCTION) UNTUK APLIKASI EOR (Construction and Expression of Single Recombinant Peptide Surfactant for Eor Application) Sari, Cut Nanda; Pasarai, Usman; Rohmat, Riesa K. W; Herlina, Leni; Suliandari, Ken Sawitri; Kristiawan, Onie; Dwiyantari, Dwiyantari; Kristianti, Tati; Suhandono, Sony
Lembaran publikasi minyak dan gas bumi Vol 50, No 3 (2016)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1105.582 KB) | DOI: 10.29017/LPMGB.50.3.3

Abstract

Surfaktan yang digunakan pada aplikasi peningkatan perolehan minyak tahap lanjut pada umumnya merupakan hasil sintesis kimia. Hasil sintesis ini bersifat cepat dan efektif namun secara kuantitas sangat kecil, sehingga bila dibutuhkan dalam jumlah banyak akan membutuhkan banyak biaya untuk memproduksinya. Alternatif lain yang bisa digunakan untuk menghasilkan surfaktan adalah dengan rekayasa genetika melalui produksi rekombinan dalam mikroorganisme seperti bakteri untuk menghasilkan surfaktan berbasis peptida. Teknologi ini relatif murah dan simpel untuk dilakukan yaitu dengan manipulasi ekspresi sel inang agar menghasilkan peptida surfaktan yang dikonstruk kedalam vektor ekspresi berbasis bakteri. Pada penelitian ini dilakukan konstruksi peptida surfaktan dengan menggunakan metode overlaped reaksi berantai polimerase untuk menghasilkan surfaktan peptida sebagai peptida tunggal. Hasil analisis SDS PAGE (Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis) menunjukkan konstruksi peptida surfaktan tunggal dapat diekspresikan dengan cara diinduksi IPTG 1 mM dan dilakukan pemecahan sel untuk mendapatkan protein yang diproduksi diperiplasma. Penelitian ini membuktikan bahwa kedua konstruk berhasil diekspresikan dengan menghasilkan peptida pada ukuran yang sesuai. Surfactant that is used in enhanced oil recovery applications is generally synthetic chemical result. This synthetic result is quick and effective but very small in quantity, so if the demand in great amount, the more expensive cost needed. The other possible alternative to produce surfactant is by genetic engineering through recombinant production in micro organism such as bacteria to produce peptide based surfactant. This technology is relatively cheap and simple to be implemented, that is by manipulating bacterial based main cell expression. In this research, construction of peptide surfactant using overlapped polymerase chain reaction method to generate surfactant peptide as single peptide. Analysis result of SDS poly acrilamid gel electrophoresis shows that single surfactant peptide construction can be expressed by induction of IPTG 1 mM and also cell cracking to obtain protein which is produced by diperiplasma. This research proves that both two constructions have been successfully expressed by producing peptide in suitable size.
BIOREMEDIATION IN PETROLEUM CONTAMINATED SOIL TREATMENT USING PLANT-MICROORGANISMS COMBINATION (Case Study: Reduction Level of TPH and BTEX in Bioremediation Process) Sari, Cut Nanda; Sativa, Tyas Putri; Moersidik, Setyo Sarwanto
Scientific Contributions Oil and Gas Vol 39, No 1 (2016)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (228.626 KB) | DOI: 10.29017/SCOG.39.1.532

Abstract

Oil spills, in both aquatic and terrestrial environments, are very detrimental to people and the environment due to hydrocarbon compounds that are contained in oil which are not only be harmful for the balance of the ecosystem and the environment but also carcinogenic to humans and animals. Therefore remediation needs to be done. One of the methods is by using a combination of microorganisms and plants. The aim of this research is to analyze the in􀃀 uences between several different treatments that are applied for TPH and BTEX removal in the process of remediation. In this research, bioremediation was conducted by using four different treatments which are: by adding compost (C), plants and compost (P), microorganisms and compost (B), and compost, plants and microorganisms (BP), to soil with oil content of 5% and 10%. The following test results of TPH in soil contaminated with 5% oil content are: 2.10% (C); 1.31% (B); 1.66% (P); and 0.68% (BP). The TPH test results in soil contaminated with oil content of 10% are: 3.30% (C); 2.54 (B); 3.91% (P); and 3.31% (BP). The highest percentage of TPH degradation in contaminated soil of 5% oil content was found in BP treatment (87.1%), while in the contaminated soil of 10% oil content the largest TPH removal percentage is by the treatment of adding bacteria (B) which is 76.19%. BTEX removal percentage in 5% oil contaminated soil in BP treatment is 68.35% while in 10% oil contaminated soil with B treatment the removal percentage is 84.91%. Based on statistical tests, both on contaminated soil with 5% and 10% oil content, TPH degradation signi􀂿 cantly affects the pH value as p 0.05 but TPH degradation does not affect temperature values as p 0.05.
PENGAMATAN MEOR MENGGUNAKAN FORMULA NUTRISI RENDAH GLUKOSA DENGAN METODA IMBIBISI Sugihardjo, Sugihardjo; ., Zulkifliani; Kristiawan, Onie; Sari, Cut Nanda; ., Syafrizal
Lembaran publikasi minyak dan gas bumi Vol 53, No 1 (2019)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (970.202 KB) | DOI: 10.29017/LPMGB.53.1.365

Abstract

Kegiatan skala laboratorium telah dilakukan untuk merancang formula nutrisi MEOR (Microbial Enhanced Oil Recovery) dengan bahan dasar rendah-glukosa. Bahan yang dipakai meliputi: limbah cair tahu, air kelapa, limbah cair ikan, limbah pengolahan pati, ekstrak teh, pupuk cair, ekstrak daging sapi, dan pepton. Bahan-bahan tersebut diracik untuk menjadi beberapa formula yang dapat merangsang pertumbuhan mikroba yang terkandung pada percontoh fluida dari sumuran SMR-01, SMR-02, dan SMR-03 sehingga menghasilkan bioproduk yang diperlukan untuk MEORPada seleksi kajian awal ada 48 formula nutrisi, kemudian diseleksi dan diperoleh yang potensial dalam pertumbuhan mikroba sebanyak 8 formula, yaitu 2 macam formula untuk SMR-01, 3 untuk SMR-02, dan 3 juga untuk SMR-03. 8 formula tersebut diinkubasi selama 7 hari dan diamati bioproduknya yang meliputi: pertumbuhan mikroba, pH, IFT, densitas, dan viskositas minyak. Pada tiap formula juga ditambahkan konsorsium mikroba exogenous untuk memperkaya jenis mikroba.Uji imbibisi dilakukan terhadap 8 formula tersebut serta ditambah 8 formula lagi dengan menambahkan konsorsium mikroba exogenous selama 71 hari. Hasil yang terbaik ternyata ada pada formula Ef1 dengan penambahan ekstrak teh dan pepton dan Ez1 dengan tambahan ekstrak teh dan ekstrak beef pada fluida SMR-02. Dengan nilai masing masing nilai RF (recovery factor) 56,91 untuk Ef1 dan 55,86% untuk Ez1. Oleh karena itu kedua formula tersebut dapat dijadikan acuan untuk implementasi lapangan. Secara ekonomis mungkin Ez1 akan lebih murah karena prosentase kandungan extract beef hanya 10%.
Dilute Acid Pretreatment And Enzymatic Hydrolysis Of Lignocellulosic Biomass For Butanol Production As Biofuel Rani, Devitra Saka; Sari, Cut Nanda
Scientific Contributions Oil and Gas Vol 35, No 1 (2012)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.35.1.776

Abstract

Biobutanol is one of the promising biofuel for substituting gasoline. Biobutanol produced from biomass fermentation using solventogenic clostridia which are able to convert a wide range of carbon sources to fuels such as butanol. Therefore, lignocellosic biomass has great potential as fermentation substrate for biobutanol production. Lignocellosic biomass should be hydrolized before fermentation by a pretreatment process and enzymatic hydrolysis. The various lignocellulosic biomass pretreatment will infl uence in butanol production depending on fermentable sugars content. The objective of this research is to get potential lignocellulosic biomass using dilute acid pretreatment and enzymatic hydrolysis process for biobutanol production. Eight types of biomass from sugarcane bagasse, rice straw, rice husk, empty fruit bunch (EFB) of palm oil, corn cob, pulp waste, traditional market organic waste, and microalgae were used in this experiment. After hydrolysis, the high result of total fermentable sugars in corn cobs, bagasse, rice straw, and rice husk, shows good opportunity of these biomass to be used as fermentation feedstocks for biobutanol production. In addition, pulp waste, organic waste, and microalgae are prospective as raw material but require more appropriate treatment either for to break down the cellulose/hemicellulose or to enhance reducing sugar content. Fine milling and delignifi cation have no signifi cant effect on cellulosic biomass conversion into fermentable sugars. Therefore, the production cost can be reduced. In order to enhance the sugar content and reduce the formation of inhibitor product, it is necessary to examine dilute acid pretreatment variations and appropriate operating conditions of enzymatic hydrolysis process