Auzani Jidin
<p>Faculty of Electrical Engineering</p><p class="Affiliation">University of Technical Malaysia, Melaka</p><p class="Affiliation">Melaka, Malaysia</p>

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A New Optimal DTC Switching Strategy for Open-End Windings Induction Machine using Dual Inverter Nabilah Aisyah; Maaspaliza Azri; Auzani Jidin; M. Z. Aihsan; MHN Talib
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1405-1412

Abstract

Since the early 1980s, fast torque dynamic control has been a subject of research in AC drives. To achieve superior torque dynamic control, two major techniques are used, namely Field Oriented Control (FOC) and Direct Torque Control (DTC), spurred on by rapid advances in embedded computing systems. Both approaches employ the space vector modulation (SVM) technique to perform the voltage source inverter into over modulation region for producing the fastest torque dynamic response. However, the motor current tends to increase beyond its limit (which can damage the power switches) during the torque dynamic condition, due to inappropriate flux level (i.e. at rated stator flux). Moreover, the torque dynamic response will be slower, particularly at high speed operations since the increase of stator flux will produce negative torque slopes more often. The proposed research aims to formulate an optimal switching modulator and produce the fastest torque dynamic response. In formulating the optimal switching modulator, the effects of selecting different voltage vectors on torque dynamic responses will be investigated. With greater number of voltage vectors offered in dual inverters, the identification of the most optimal voltage vectors for producing the fastest torque dynamic responses will be carried out based on the investigation. The main benefit of the proposed strategy is that it provides superior fast torque dynamic response which is the main requirements for many AC drive applications, e.g. traction drives, electric transportations and vehicles.
Simplified VHDL Coding of Modified Non-Restoring Square Root Calculator Tole Sutikno; Aiman Zakwan Jidin; Auzani Jidin; Nik Rumzi Nik Idris
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 1, No 1: March 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (312.99 KB) | DOI: 10.11591/ijres.v1.i1.pp37-42

Abstract

Square root calculation is one of the most useful and vital operation in digital signal processing which in recent generations of processors, the operation is performed by the hardware. The hardware implementation of the square root operation can be achieved by different means, but it is very dependent on programmer's sense and ability to write efficient hardware designs. This paper offers universal and shortest VHDL coding of modified non-restoring square root calculator. The main principle of the method is similar with conventional non-restoring algorithm, but it only uses subtract operation and append 01, while add operation and append 11 is not used. The strategy has conducted to implement successfully in FPGA hardware, and offer an efficient in hardware resource, and it is superior.