Mohd Junaidi Abdul Aziz
Universiti Teknologi Malaysia

Published : 17 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 17 Documents
Search

A Novel Technique for Fault-Tolerant Control of Single-Phase Induction Motor Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 3: September 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i3.1480

Abstract

This research discusses about vector control of single-phase Induction Motor (IM) with two main and auxiliary windings under stator winding open-phase fault based on Indirect Rotor Flux-Oriented Control (IRFOC). Unlike conventional controller which can only be used for single-phase IM with two windings, the proposed technique in this paper can also be used for single-phase IM under open-phase fault. The proposed fault-tolerant drive system in this paper is based on using transformation matrix. Simulations results confirm the validity of the theoretical analysis.
Stator Field-Orientation Speed Control for 3-Phase Induction Motor under Open-Phase Fault Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 2: June 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i2.1441

Abstract

The industrial requirements for the control of an Induction Motor (IM) under fault conditions continue to be of attention, as evidenced by the majority current publications. The focus is on developments of control methods which can be used for faulty IM. A novel vector control technique based on Stator Field-Oriented Control (SFOC) for a 3-phase IM under open-phase fault is proposed in this paper. MATLAB simulation results are presented to illustrate the improvement in performance of the proposed algorithm.
High Performance Speed Control of Single-Phase Induction Motors Using Switching Forward and Backward EKF Strategy Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 1: March 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i1.pp17-27

Abstract

The aim of this research is to provide a high performance vector control of single-phase Induction Motor (IM) drives. It is shown that in the rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with the balanced structure. Based on this, a method for vector control of the single-phase IM, using two modified Rotor Field-Oriented Control (RFOC) algorithms is presented. In order to accommodate forward and backward rotor fluxes in the presented controller, an Extended Kalman Filter (EKF) with two different forward and backward currents that are switched interchangeably (switching forward and backward EKF), is proposed. Simulation results illustrate the effectiveness of the proposed algorithm.
Speed Sensorless Direct Rotor Field-Oriented Control of Single-Phase Induction Motor Using Extended Kalman Filter Mohammad Jannati; Seyed Hesam Asgari; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 4, No 4: December 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (806.401 KB)

Abstract

Nowadays, Field-Oriented Control (FOC) strategies broadly used as a vector based controller for Single-Phase Induction Motors (SPIMs). This paper is focused on Direct Rotor FOC (DRFOC) of SPIM. In the proposed technique, transformation matrices are applied in order to control the motor by converting the unbalanced SPIM equations to the balanced equations (in this paper the SPIM with two different stator windings is considered). Besides this control technique, a method for speed estimation of SPIM based on Extended Kalman Filter (EKF) to achieve the higher performance of SPIM drive system is presented. Simulation results are provided to demonstrate the high performance of the presented techniques.DOI: http://dx.doi.org/10.11591/ijpeds.v4i4.6098
Modeling of Balanced and Unbalanced Three-Phase Induction Motor under Balanced and Unbalanced Supply Based on Winding Function Method Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 4: August 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1531.172 KB) | DOI: 10.11591/ijece.v5i4.pp644-655

Abstract

An accurate model of balanced and unbalanced three-phase Induction Motor (IM) under balanced and unbalanced supply conditions based on Winding Function Method (WFM) is presented in this work. In this paper, the unbalanced condition in three-phase IM is limited to stator winding open-phase fault. The analysis of presented models is shown in details which allow predicting the performance of 3-phase IM under different conditions. Computer simulations were obtained using the MATLAB software for a three-phase squirrel cage IM. MATLAB simulation results show that the oscillation of the speed and electromagnetic torque has increased considerably due to the open-phase fault in stator windings.
Switching FOC Method for Vector Control of Single-Phase Induction Motor Drives Mohammad Jannati; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz; Tole Sutikno; M. Ghanbari
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2460.402 KB) | DOI: 10.11591/ijece.v6i2.pp474-483

Abstract

This paper proposes a novel vector control method based on Rotor flux Field-Oriented Control (RFOC) for single-phase Induction Motor (IM) drives. It is shown that in a rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with balanced structures. In order to accommodate for these forward and backward equations, a drive system consisting of two RFOCs that are switched interchangeably, is proposed. Alternatively, these two RFOC algorithms can be simplified as a single FOC algorithm. The analysis, controller design and simulation of the proposed technique showed that it is feasible for single-phase IM drive for high performance applications.
A Novel Method for Vector Control of Faulty Three-Phase IM Drives Based on FOC Method Mohammad Jannati; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 6: December 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1946.523 KB) | DOI: 10.11591/ijece.v5i6.pp1284-1291

Abstract

This paper proposes a novel method for vector control of faulty three-phase Induction Motor (IM) drives based on Field-Oriented Control (FOC) method. The performance characteristics of the presented drive system are investigated at healthy and open-phase fault conditions. The simulation of the case study is carried out by using the Matlab/M-File software for a star-connected three-phase IM. The results show the better performance of the proposed drive system especially in reduction of motor speed and torque oscillations during open-phase fault operating.
High Performance Vector Control of 3-Phase IM Drives under Open-Phase Fault Based on EKF for Rotor Flux Estimation Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2646.465 KB) | DOI: 10.11591/ijece.v6i2.pp458-467

Abstract

This paper proposes a novel flux observer based on Extended Kalman Filter (EKF) for high performance vector control of 3-phase Induction Motor (IM) drives under stator winding open-phase fault. The presented flux estimation combines the Indirect Rotor Field-Oriented Control (IRFOC) method. The rotor flux is obtained from two modified EKF with two different stator currents (forward and backward stator currents). The proposed technique can significantly reduce the DC-offset problem on the pure integrator associated with the basic IRFOC method. The Matlab simulation results confirm the validity of the proposed strategy.
Speed Sensorless Vector Control of Unbalanced Three-Phase Induction Motor with Adaptive Sliding Mode Control Mohammad Jannati; Ali Monadi; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 4, No 3: September 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper presents a technique for speed sensorless Rotor Flux Oriented Control (RFOC) of 3-phase Induction Motor (IM) under open-phase fault (unbalanced or faulty IM). The presented RFOC strategy is based on rotational transformation. An adaptive sliding mode control system with an adaptive switching gain is proposed instead of the speed PI controller. Using an adaptive sliding mode control causes the proposed speed sensorless RFOC drive system to become insensitive to uncertainties such as load disturbances and parameter variations. Moreover, with adaptation of the sliding switching gain, calculation of the system uncertainties upper bound is not needed. Finally, simulation results have been presented to confirm the good performance of the proposed method.DOI: http://dx.doi.org/10.11591/ijpeds.v4i3.6212
Comparison of electronic load using linear regulator and boost converter Razman Ayop; Shahrin Md Ayob; Chee Wei Tan; Tole Sutikno; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1720-1728

Abstract

Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.