Claim Missing Document
Check
Articles

Found 28 Documents
Search

Asymmetric quasi impedance source buck-boost converter Muhammad Ado; Awang Jusoh; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2024.018 KB) | DOI: 10.11591/ijece.v10i2.pp2128-2138

Abstract

An impedance source buck-boost converter (BBC) prototype for renewable energy (RE) application in the transportation industry is proposed. Its functions include stabilizing the variable output voltage of the RE sources such as fuel cells and photovoltaic cells. The converter utilized a topology of DC-DC quasi-impedance source converters (q-ZSCs) to achieve the gain curve of the BBC. With BBC gain curve, the converter earned advantages over the two other classes of non-isolated DC-DC q-ZSCs. These advantages include ecient buck-boost capability at the ecient duty ratio range of 0:35-0:65 and continuous and non-zero gain at the ecient duty ratio range. The converter's q-ZSC topology implies using two capacitors and two inductors. These two capacitors and inductors formed two separate LC filters that provides second order filtering compared to the first order filtering in BBC. Its other advantages over the traditional BBC include elim-ination of dead and overlap-time, simple contol and permitting higher switching frequency operation. The converter is capable of utilizing high switching frequency and asymmetric components to achieve BBC gain by using smaller components to reduce cost, weight and size. Its simulation response and that of a correspond-ing BBC for some given specifications were compared, presented and analyzed. An experimental scaled-down prototype was also developed to confirm its operation. Analysis of the converters responses comfirmed the prototype's second order filtering as against the first order filtering in traditional BBC.
Enhancing the performance of cascaded three-level VSC STATCOM by ANN controller with SVPWM integegration Mohamad Milood Almelian; Izzeldin. I. Mohd; Abu Zaharin Ahmad; Mohamed Salem; Mohamed A. Omran; Awang Jusoh; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 5: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1041.591 KB) | DOI: 10.11591/ijece.v9i5.pp3880-3890

Abstract

This article presents a cascaded three-level voltage source converter (VSC) based STATCOM employing an artificial neuron network (ANN) controller with a new simple circuit of space vector pulse width modulation (SVPWM) technique. The main aim of utilizing ANN controller and SVPWM technique is to minimize response time (RT) of STATCOM and improve its performance regard to PF amplitude, and total harmonic distortion (THD) of VSC output current during the period of lagging/leading PF loads (inductive/capacitive loads). The performance of STATCOM is tested using MATLAB/SIMULINK in IEEE 3-bus system. The simulation results clearly proved that the STATCOM with intelligent controller is more efficient compared to a conventional controller (PI controller), where ANN enables the voltage and current to be in the same phase rapidly (during 1.5 cycles) with THD less than 5%.
Extended family of DC-DC Quasi-Z-Source converters Muhammad Ado; Awang Jusoh; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1198.464 KB) | DOI: 10.11591/ijece.v9i6.pp4540-4555

Abstract

The family of DC-DC q-ZSCs is extended from two to three classes and four to six members. All the members were analyzed based on efficient duty ratio range (RDeff) and general duty ratio range (RDgen). Findings showed that similar to the traditional buck-boost converter (BBC), each of the topologies is theoretically capable of inverted buck-boost (BB) operation for the RDgen with additional advantages but differed according to class in how the gains are achieved. The new topologies have advantages of BB capability at the RDeff, continuous and operable duty ratio range with unity gain at  contrary to existing topologies where undefined or zero gain is produced. Potential applications of each class were discussed with suitable topologies for applications such as fuel cells, photovoltaic, uninterruptible power supply (UPS), hybrid energy storage and load levelling systems identified.
Dynamic model of A DC-DC quasi-Z-source converter (q-ZSC) Muhammad Ado; Awang Jusoh; Abdulhamid Usman Mutawakkil; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1147.394 KB) | DOI: 10.11591/ijece.v9i3.pp1585-1597

Abstract

Two quasi-Z-source DC-DC converters (q-ZSCs) with buck-boost converter gain were recently proposed. The converters have advantages of continuous gain curve, higher gain magnitude and buck-boost operation at efficient duty ratio range when compared with existing q-ZSCs. Accurate dynamic models of these converters are needed for global and detailed overview by understanding their operation limits and effects of components sizes. A dynamic model of one of these converters is proposed here by first deriving the gain equation, state equations and state space model. A generalized small signal model was also derived before localizing it to this topology. The transfer functions (TF) were all derived, the poles and zeros analyzed with the boundaries for stable operations presented and discussed. Some of the findings include existence of right-hand plane (RHP) zero in the duty ratio to output capacitor voltage TF. This is common to the Z-source and quasi-Z-source topologies and implies control limitations. Parasitic resistances of the capacitors and inductors affect the nature and positions of the poles and zeros. It was also found and verified that rather than symmetric components, use of carefully selected smaller asymmetric components L1 and C1 produces less parasitic voltage drop, higher output voltage and current under the same conditions, thus better efficiency and performance at reduced cost, size and weight.
ZVS Full Bridge Series Resonant Boost Converter with Series-Connected Transformer Mohamed Salem; Awang Jusoh; N.Rumzi N. Idris; Tole Sutikno; Iftikhar Abid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.651 KB) | DOI: 10.11591/ijpeds.v8.i2.pp812-825

Abstract

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.
Comparisons of PI and ANN controllers for shunt HPF based on STF-PQ Algorithm under distorted grid voltage Mohamed Asghaiyer Omran; Izzeldin. I. Ibrahim; Abu Zaharin Ahmad; Mohamed Salem; Mohamad Milood Almelian; Awang Jusoh; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (399.039 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1339-1346

Abstract

This paper proposes a shunt hybrid power filter (HPF) for harmonic currents and reactive power compensation under a distorted voltage and in a polluted environment. For this purpose, the reference current of the shunt HPF is computed based on the instantaneous reactive power (p-q) theory with self-tuning filter (STF). In order to adjust the dc voltage as a reference value, PI and ANN controllers have been utilized. Moreover, the system has been implemented and simulated in a MATLAB-SIMULINK platform, and selected results are presented. Therefore, the results verified the good dynamic performance, transient stability and strong robustness of the ANN controller. Furthermore, the shunt HAPF with ANN controller has been found to be in agreement with the IEEE 519-1992 standard recommendations on harmonic levels.
Design and development of SEPIC DC-DC boost converter for photovoltaic application Ibrahim Alhamrouni; M. K. Rahmat; F. A. Ismail; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.957 KB) | DOI: 10.11591/ijpeds.v10.i1.pp406-413

Abstract

This study highlights a new construction of SEPIC DC-DC converter. The proposed converter aims for some features such as high voltage gain, continuous input current and reduce stress on the power switch. In addition, the circuit construction ensurs the simplicity in design along with signicant cost saving, since its components are readily available and smaller in size compared to the off-shelf components. This type of converter can adjust the DC voltage to maintain its output voltage to be constant. Typically, SEPIC operated in equipment that uses battery and also in wide range input voltage DC power supply. The converter is designed for renewable energy application where it is able to regulate the output voltage of the Photovoltaic (PV). The converter has been analysed based on different switching frequencies and duty cycle. Thus the outcome of the proposed converter can be achieved by using D=0.45 and fs=30 kHz. The proposed converter is supplied by 26V as an input voltage and produces 300V output and gives 94% of efficiency.
Improvement of the performance of STATCOM in terms of voltage profile using ANN controller Mohammed Salheen Alatshan; Ibrahim Alhamrouni; Tole Sutikno; Awang Jusoh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i4.pp1966-1978

Abstract

The electronic equipments are extremely sensitive to variation in electric supply. The increasing of a nonlinear system with several interconnected unpredicted and non-linear loads are causing some problems to the power system. The major problem facing the power system is power quality, controlling of reactive power and voltage drop. A static synchronous compensator (STATCOM) is an important device commonly used for compensation purposes, it can provide reactive support to a bus to compensate voltage level. In this paper, the Artificial Neural Network (ANN) controlled STATCOM has been designed to replace the conventional PI controller to enhance the STATCOM performance. The ANN controller is proposed due to its simple structure, adaptability, robustness, considering the power grid non linearities. The ANN is trained offline using data from the PI controller. The performance of STATCOM with case of Load increasing and three-phase faults case was analyzed using MATLAB/Simulink software on the IEEE 14-bus system. The comprehensive result of the PI and ANN controllers has demonstrated the effectiveness of the proposed ANN controller in enhancing the STATCOM performance for Voltage profile at different operating conditions. Furthermore, it has produced better results than the conventional PI controller.
Enhancement of cascaded multi-level VSC STATCOM performance using ANN in the presence of faults Mohamad M Almelian; Izzeldin I Mohd; Abu Zaharin Ahmad; Mohamed A Omran; Mohamed Salem; Awang Jusoh; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1010.305 KB) | DOI: 10.11591/ijpeds.v11.i2.pp895-906

Abstract

A system can be disturbed in terms of stability when connected to a number of loads at the distribution ends or when subjected to faults. To reverse such systems to a stable state, FACTS devices such as static synchronous compensator (STATCOM) are used. In this paper, a cascaded multi-level voltage source converter (VSC) STATCOM was designed and implemented with a novel space vector pulse width modulation (SVPWM) scheme. Artificial neural network (ANN) controller was used instead of instead of Proportional-Integral (PI) controller in the proposed scheme to improve the response time (RT) and performance of STATCOM in terms of power factor (PF) and voltage amplitude during periods of voltage sag. During the implementation, two fault sources (single-line-to-ground (SLG) and line-to- line (LL) faults) were used to create voltage sag. STATCOM was subjected to performance evaluation in the presence of these disturbances via MATLAB simulation in IEEE 3-bus system. The outcome of the simulation studies showed the ANN controller to perform better than PI as it was able to rapidly recover voltage value (<1 cycle) with unity PF.
Modelling and design of PID controller for voltage control of AC hybrid micro-grid Ibrahim Alhamrouni; M. A. Hairullah; N. S. Omar; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (538.29 KB) | DOI: 10.11591/ijpeds.v10.i1.pp151-159

Abstract

The growing demand for power that needs to be remotely transported creates a fast and effective solution of Distributed Energy Resources (DERs) integration. Distributed Energy Resources (DERs) can lessen the electrical and physical distance between load loss and generator, transmission and distribution, and the level of carbon emissions. Such challenges can be overcome by using microgrids, which combine various types of DERs without interrupting the grid operation, allowing the power system to detect and control the errors more efficiently, allowing the shedding load and automatic switching through control algorithms so that blackouts and power restoration times are shortened, enabling either a relevant grid or islanded mode operation, and improving system reliability and flexibility via DERs. This work includes modelling of hybrid AC micro-grid as well as presenting an efficient control technique for micro-grid. In the present work the performance of hybrid AC microgrid system is analyzed in the islanded mode. Photovoltaic system and fuel cell stack are used for the development of microgrid. It also includes microgrid control objectives and the most common problems encountered and their solutions. The employed control technique is able to control the output voltage at a desired and standard value. The control strategies of the hybrid AC microgrid are simulated in MATLAB/SIMULINK.