Suhartono Suhartono
Institut Teknologi Sepuluh Nopember Surabaya

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pemodelan Produksi Minyak dan Gas Bumi Pada Platform “MK” di PT “X” Menggunakan Metode ARIMA, Neural Network, dan Hibrida ARIMA-Neural Network Windia Cinde Prameswari; Destri Susilaningrum; Suhartono Suhartono
Jurnal Sains dan Seni ITS Vol 5, No 2 (2016)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (696.304 KB) | DOI: 10.12962/j23373520.v5i2.16893

Abstract

Minyak dan gas bumi dapat diambil secara langsung melalui sumur-sumur yang dibuat, namun sumur-sumur tersebut tidak akan menghasilkan jumlah minyak dan gas bumi yang konstan setiap hari. Ketika kandungan minyak dan gas mulai turun maka yang harus dilakukan adalah memberikan treatment terhadap sumur tersebut, sehingga minyak dan gas yang masih terkandung di dasar bumi bisa naik dengan jumlah yang lebih banyak. Tujuan dilakukannya penelitian ini adalah untuk membantu perusahaan dalam menganalisis jumlah produksi minyak dan gas bumi selama periode 14 hari selanjutnya, sehingga dapat diketahui apakah selama periode 14 hari selanjutnya diperlukan treatment terhadap sumur. Data yang digunakan adalah jumlah produksi minyak dan gas bumi pada platform “MK” pada tahun 2015. Pemodelan jumlah produksi minyak dan gas bumi dilakukan menggunakan tiga metode, yaitu ARIMA, neural network, dan Hibrida ARIMA-neural network. Hasil yang diperoleh berdasarkan analisis ketiga metode tersebut adalah pada jumlah produksi minyak bumi model terbaik diperoleh dari metode hibrida ARIMA-neural network, dengan hasil ramalan yang cenderung sama selama 14 hari yaitu 1961 barel. Sedangkan jumlah produksi gas bumi model terbaik diperoleh dari metode neural network, dengan ramalan produksi untuk 14 hari selanjutnya cenderung meningkat.
Applying of Double Seasonal ARIMA Model for Electrical Power Demand Forecasting at PT. PLN Gresik Indonesia Ismit Mado; Adi Soeprijanto; Suhartono Suhartono
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (880.972 KB) | DOI: 10.11591/ijece.v8i6.pp4892-4901

Abstract

The prediction of the use of electric power is very important to maintain a balance between the supply and demand of electric power in the power generation system. Due to a fluctuating of electrical power demand in the electricity load center, an accurate forecasting method is required to maintain the efficiency and reliability of power generation system continuously. Such conditions greatly affect the dynamic stability of power generation systems. The objective of this research is to propose Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) to predict electricity load. Half hourly load data for of three years period at PT. PLN Gresik Indonesia power plant unit are used as case study. The parameters of DSARIMA model are estimated by using least squares method. The result shows that the best model to predict these data is subset DSARIMA with order ([1,2,7,16,18,35,46],1,[1,3,13,21,27,46])(1,1,1)48(0,0,1)336 with MAPE about 2.06%. Thus, future research could be done by using these predictive results as models of optimal control parameters on the power system side.
Forecasting electricity load demand using hybrid exponential smoothing-artificial neural network model Winita Sulandari; Subanar Subanar; Suhartono Suhartono; Herni Utami
International Journal of Advances in Intelligent Informatics Vol 2, No 3 (2016): November 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i3.69

Abstract

Short-term electricity load demand forecast is a vital requirements for power systems. This research considers the combination of exponential smoothing for double seasonal patterns and neural network model. The linear version of Holt-Winter method is extended to accommodate a second seasonal component. In this work, the Fourier with time varying coefficient is presented as a means of seasonal extraction. The methodological contribution of this paper is to demonstrate how these methods can be adapted to model the time series data with multiple seasonal pattern, correlated non stationary error and nonlinearity components together. The proposed hybrid model is started by implementing exponential smoothing state space model to obtain the level, trend, seasonal and irregular components and then use them as inputs of neural network. Forecasts of future values are then can be obtained by using the hybrid model. The forecast performance was characterized by root mean square error and mean absolute percentage error. The proposed hybrid model is applied to two real load series that are energy consumption in Bawen substation and in Java-Bali area. Comparing with other existing models, results show that the proposed hybrid model generate the most accurate forecast