Claim Missing Document
Check
Articles

Found 14 Documents
Search

Energy Harvesting on Footsteps Using Piezoelectric based on Circuit LCT3588 and Boost up Converter Iswanto Iswanto; Slamet Suripto; Faaris Mujaahid; Karisma Trinanda Putra; Noor Pratama Apriyanto; Yosi Apriani
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (326.312 KB)

Abstract

Piezoelectric utilization as a generator is an effort to obtain electrical energy that refers to the concept of energy harvesting referring the development of piezoelectric as a generator that converts the pressure or vibration generated from steps into electrical energy that can be used on low-power electronic devices. Because the use of piezoelectric as a generator allows the use in charging low voltage, a larger resource is required in different series. Based on the problem, an energy harvesting device and a voltage amplifier are created to increase the voltage of the pizoelectric output. An arduino microcontroller is used to control the energy harvesting device and voltage booster. It is required approximately 10 steps to charge four AA 1.2 Volt batteries and 80 steps to charge two 12 volt batteries respectively.
Path Planning Based on Fuzzy Decision Trees and Potential Field Iswanto Iswanto; Oyas Wahyunggoro; Adha Imam Cahyadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 1: February 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.221 KB) | DOI: 10.11591/ijece.v6i1.pp212-222

Abstract

The fuzzy logic algorithm is an artificial intelligence algorithm that uses mathematical logic to solve to by the data value inputs which are not precise in order to reach an accurate conclusion. In this work, Fuzzy decision tree (FDT) has been designed to solve the path planning problem by considering all available information and make the most appropriate decision given by the inputs. The FDT is often used to make a path planning decision in graph theory. It has been applied in the previous researches in the field of robotics, but it still shows drawbacks in that the robot will stop at the local minima and is not able to find the shortest path. Hence, this paper combines the FDT algorithm with the potential field algorithm. The potential field algorithm provides weight to the FDT algorithm which enables the robot to successfully avoid the local minima and find the shortest path.
Hover Position of Quadrotor Based on PD-like Fuzzy Linear Programming Iswanto Iswanto; Oyas Wahyunggoro; Adha Imam Cahyadi
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (235.792 KB) | DOI: 10.11591/ijece.v6i5.pp2251-2261

Abstract

The purpose of this paper is to present the altitude control algorithm for quadrotor to be able to fly at a particular altitude. Several previous researchers have conducted studies on quadrotor altitude by using PID control but there are problems in the overshoot and oscillation. To optimize the control, tunning on PID algorithm must be first conducted to determine proportional and derivative constants. Hence, the paper presents altitude control modification by using PID-like fuzzy without tuning. The PID algorithm is a control algorithm for linear systems. While, system to be controlled is a non-linear, so that linearization is needed by using equilibrium. The proposed algorithm is a modification of the PID algorithm used as an altitude control which enables quadrotor to be stable when hovering. The algorithm used is not PID algorithm with tuning using fuzzy, but this is a single input single output (SISO) control PID-like fuzzy linear programming. The result of the research shows that quadrotor can hover in a rapid raise time, steady state and settling time without performing overshoot and oscillation.
Pursuit Algorithm for Robot Trash Can Based on Fuzzy-Cell Decomposition Tatiya Padang Tunggal; Andi Supriyanto; Nur Mukhammad Zaidatur Rochman; Ibnu Faishal; Imam Pambudi; Iswanto Iswanto
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 6: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (549.077 KB) | DOI: 10.11591/ijece.v6i6.pp2863-2869

Abstract

Scooby Smart Trash can is a trash can equipped with artificial intelligence algorithms that is able to capture and clean up garbages thrown by people who do not care about the environment. The can is called smart because it acts like scoobydoo in a children's cartoon in that the can will react if there is garbage thrown and it catches and cleans them up. This paper presents pursuit algorithm that uses cell decomposition algorithm in which algorithms are used to create a map of the robot's path and fuzzy algorithm as one of the artificial intelligence algorithm for robot path planning. By using the combined algorithms, the robot is able to pursuit and chases the trash carelessly discarded, but it has not been able to find the shortest distance. Therefore, this paper considers a second modification of the algorithm by adding a potential field algorithm used to add weight values on the map, so that the robot can pursue trash by finding the shortest path. The proposed algorithm shows that the robot can avoid obstacles and find the shortest path so that the time required to get to the destination point is fast.
Hovering Control of Quadrotor Based on Fuzzy Logic Nia Maharani Raharja; Eka Firmansyah; Adha Imam Cahyadi; Iswanto Iswanto
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (541.696 KB) | DOI: 10.11591/ijpeds.v8.i1.pp492-504

Abstract

Quadrotor is one of rotary wing UAV types which is able to perform a hover position. In order to take off, landing, and hover, it needs controllers. Conventional controllers have been widely applied in quadrotor, yet they have drawbacks namely overshoot. This paper presents attitude and altitude control algorithm in order to obtain a response as quadrotor hovered optimally within minimum overshoot, rise time, and settling time. The algorithm used is Fuzzy Logic Controller (FLC) algorithm with Mamdani method. By using the algorithm, the quadrotor is able to hover with minimum overshoot and maximum rise time. The advantage of the algorithm is that it does not require linearization model of the quadrotor.
Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition Algorithm Iswanto Iswanto; Oyas Wahyunggoro; Adha Imam Cahyadi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 2: June 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i2.2989

Abstract

The purpose of this paper is to present an algorithm to determine the shortest path for quadrotor to be able to navigate in an unknown area. The problem in robot navigation is that a robot has incapability of finding the shortest path while moving to the goal position and avoiding obstacles. Hence, a modification of several algorithms are proposed to enable the robot to reach the goal position through the shortest path. The algorithms used are fuzzy logic and cell decomposition algorithms, in which the fuzzy algorithm which is an artificial intelligence algorithm is used for robot path planning and cell decomposition algorithm is used to create a map for the robot path, but the merger of these two algorithms is still incapable of finding the shortest distance. Therefore, this paper describes a modification of the both algorithms by adding potential field algorithm that is used to provide weight values on the map in order for the quadrotor to move to its goal position and find the shortest path. The modification of the algorithms have shown that quadrotor is able to avoid various obstacles and find the shortest path so that the time required to get to the goal position is more rapid.
Accumulator Charging Control with Piezoelectric Based on Fuzzy Algorithm Scheduling Iswanto Iswanto; Wahyu Sari Agustiningsih; Faaris Mujaahid; Rohmansyah Rohmansyah; Aris Budiman
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 2: April 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i2.7067

Abstract

Battery accumulator charging with pizoelectric takes considerable long time so that an energy harvester is needed by using in this study LTC 3588 circuit. However, by using the energy harvester, the pizoelectric cannot be used to charge 12 volt battery, thus a boost converter is needed. The output voltage is too small to increase by using the boost converter so that the output from the energy converter is used to charge four AA batteries. After the voltage of the four AA batteries as much as 4.7 volt is increased by using the boost converter, the batteries can be used to charge accumulator battery 12 volt. To charge the battery to accumulator, scheduling algorithm planted in microcontroller arduino is needed. By using the scheduling algorithm with fuzzy logic in the arduino microcontroller, the microcontroller is able to control schedule of accumulatro battery charging.
Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on The Trajectory Planning and Motion Control Based Microcontroller Dhiya Uddin Rijalusalam; Iswanto Iswanto
Journal of Robotics and Control (JRC) Vol 2, No 5 (2021): September
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.25121

Abstract

The control of kinematic modeling in a four wheel omni-directional robot (FWOR) is very difficult. Because you have to adjust the speed of the four DC motors. The speed of DC motors is controlled so that the FWOR robot can be controlled. This paper will explain the application of kinematic modeling of four wheel omni directional robots as track tracking controllers and microcontroller based movement control. Kinematic is the study of robot motion based on geometric structure analysis of a stationary / moving reference coordinate frame system without considering the force, torque or certain moments that cause movement. By applying kinematic modeling and calculation of the odometric system as feedback, the control of the robot trajectory movement can be controlled with precision in accordance with the path planning that has been made. The robot track control technique is embedded in a 32-bit ARM microcontroller. The path planning system and observing robot movement are carried out using a friendly graphic interface using Processing to facilitate the robot monitoring process. The results of the experiments and tests carried out, the system is able to control the rate of movement of the robot with great precision in accordance with the path planning made.
Second Order Integral Fuzzy Logic Control Based Rocket Tracking Control Iswanto Iswanto; Irfan Ahmad
Journal of Robotics and Control (JRC) Vol 2, No 6 (2021): November
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.26142

Abstract

Fuzzy logic is a logic that has a degree of membership in the vulnerable 0 to 1. Fuzzy logic is used to translate a quantity that is expressed using language. Fuzzy logic is used as a control system because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this paper is to present a fuzzy control system implemented in a rocket tracking control system. The fuzzy control system is used to keep the rocket on track and traveling at a certain speed. The signal from the fuzzy logic control system is used to control the rocket thrust. The fuzzy Logic System was chosen as the controller because it is able to work well on non-linear systems and offers convenience in program design. Fuzzy logic systems have a weakness when working on systems that require very fast control such as rockets. With this problem, fuzzy logic is modified by adding second-order integral control to the modified fuzzy logic. The proposed algorithm shows that the missile can slide according to the ramp path at 12 m altitude of 12.78 at 12 seconds with a steady-state error of 0.78 under FLC control, at 10 m altitude of 10.68 at 10 seconds with a steady-state error of 0.68 with control integral FCL, at a height of 4 m is 4.689 at 4 seconds with a steady-state error of 0.689 with a second-order integral control of FCL. The missile can also slide according to the parabolic path with the second-order integral control of FCL at an altitude of 15.47 in the 4th minute with a steady-state error of 0.
Pembuatan Aluminium Berpori dengan metode Metalurgi Serbuk Berbahan Amonium Hidrogen Karbonat ((NH4)HCO3) sebagai Space Holder beserta Karakterisasinya Aris Widyo Nugroho; Iswanto Iswanto
Semesta Teknika Vol 21, No 2 (2018): NOVEMBER 2018
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.212220

Abstract

The reseacrh on fabrication of porous aluminum using powder metallurgy technique with amonium hidrogen karbonat as space holder has been carried out. The space holder powder with various space holder mass fraction of 20%,30%, 40% and 50% in 5 gram of total mass and the aluminum powder were put into a can for mixing process. Afterward the mixed powder was compacted at 300 kg/cm2 to obtain the green body. Density of the green body was then determined by measuring its dimension and the mass. Following this, the green body was put in a furnace and heated up to 200oC with holding time of 60 minutes for space holder removal. The second heating up was carried out up to 650oC with holding time of 60 minutes for sintering process and the furnace was then switched off for cooling. Porosity of the sintered porous aluminum was calculated and its microstructure was examined using an optical microscop. The compressive strength of the porous material was evaluated using universal testing machine. The result show that the porosity increases with an increase of the mass fraction in the range of 56-74% with the compressive strength in opposite way. The strength was found in the range of 1.2-15.7 MPa. All specimens show a typical britlle materials.