Articles
Kemampuan Pematematikaan Horizontal Siswa Sekolah Dasar dalam Menyelesaikan Masalah Bilangan Bulat Positif
Najwa, Wulida Arina;
Susiswo, Susiswo;
As’ari, Abdur Rahman
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 12: DESEMBER 2018
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (48.547 KB)
|
DOI: 10.17977/jptpp.v3i12.11819
Abstract: One of the mathematisation processes in Realistic Mathematics Education is horizontal mathematisation. Using a qualitative approach, this research describes the horizontal mathematisation ability of grade 4 elementary school students in solving problem-solving questions on positive integers. The result of this research shows that there is a relationship between students' mathematical abilities and their horizontal mathematisation abilities. Students with moderate ability levels have moderate horizontal mathematisation abilities and students with high levels of ability have high horizontal mathematisation abilities.Abstrak: Salah satu proses matematisasi dalam Realistic Mathematics Education adalah pematematikaan horizontal. Penelitian ini menggunakan pendekatan kualitatif yang mendeskripsikan kemampuan pematematikaan horizontal siswa kelas IV sekolah dasar dalam menyelesaikan soal pemecahan masalah bilangan bulat positif. Hasil penelitian ini menunjukkan bahwa ada hubungan antara kemampuan matematika siswa dengan kemampuan pematematikaan horizontal siswa. Siswa pada tingkat kemampuan rendah memiliki kemampuan pematematikaan horizontal yang rendah, sedangkan siswa pada tingkat kemampuan tinggi memiliki kemampuan pematematikaan horizontal yang tinggi.
REPRESENTASI DALAM MENYELESAIKAN MASALAH BARISAN BERDASARKAN TINGKAT KEMAMPUAN SISWA
Prasanti, Devinta Reza;
Susiswo, Susiswo
Jurnal Kajian Pembelajaran Matematika Vol 2, No 2 (2018): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (624.887 KB)
Penelitian ini bertujuan untuk mendeskripsikan representasi dalam menyelesaikan masalah barisan berdasarkan tingkat kemampuan siswa. Penelitian ini menggunakan metode penelitian kualitatif dengan jenis penelitian deskriptif. Subjek penelitian ditentukan berdasarkan hasil tes pengetahuan prasyarat, sedangkan data diperoleh dari hasil tes kemampuan representasi matematis dan wawancara. Hasil penelitian menunjukkan bahwa, dalam menyelesaikan masalah barisan, siswa berkemampuan tinggi menggunakan representasi verbal, visual, dan simbolik. Siswa berkemampuan tinggi melakukan keempat tahap penyelesaian masalah sehingga memperoleh jawaban yang benar. Sedangkan siswa berkemampuan sedang hanya menggunakan representasi verbal dan simbolik. Siswa berkemampuan sedang tidak melakukan tahap memeriksa kembali pada salah satu masalah, tetapi jawaban yang diperoleh benar. Sementara siswa berkemampuan rendah menggunakan representasi verbal, visual, dan simbolik. Pada saat menyelesaian masalah, siswa berkemampuan rendah tidak melakukan tahap memeriksa kembali pada kedua masalah, dan jawaban yang diperoleh salah.
Komunikasi Matematis Siswa Dalam Menyelesaikan Masalah Persamaan Garis Ketika Folding Back
Syafitri, Intan;
Susiswo, Susiswo;
Permadi, Hendra
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v4i10.12751
Abstract: Describing student?communication experienced foldingback in solving mathematics problem is the destination of this research. The eight grade students of SMP Islam Syabilurrosyad Malang have participated here. Student with high communication going through folding back effectively and clearly following logic reasoning. Student with high communication could write folding back result rightly and consecutively. Student with medium communication going through folding back after intervention. Student with medium communication have communicated folding back result clearly and consecutively but still there were mistakes in the last solution.Abstrak: Tujuan penelitian ini yaitu mendeskripsikan komunikasi matematis siswa yang mengalami folding back ketika menyelesaiakan masalah matematika. Penelitian ini dilaksanakan di kelas VIII SMP Islam Syabilurrosyad kota Malang. Siswa dengan kemampuan tinggi mengomunikasikan folding back nya dengan efektif dan jelas disertai alasan logis. Subjek berkemampuan tinggi juga menuliskan respon hasil folding back nya dengan benar dan terurut. Subjek berkemampuan sedang mengalami folding back setelah adanya intervensi. Subjek mengomunikasikan hasil folding back dengan jelas dan terurut namun masih terdapat kesalahan pada solusi akhir jawabannya.
Berpikir Pseudo Siswa pada Konsep Pecahan
Alamsyah, Agus;
Susiswo, Susiswo;
Hidayanto, Erry
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 8: AGUSTUS 2019
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (423.099 KB)
|
DOI: 10.17977/jptpp.v4i8.12674
Abstract: Purpose of this research was to study students' pseudo thinking in concept of fractions. Data obtained using questions and interviews. Question used to find answers of students in understanding concept of fractions. Interviews used to find reasons for students answer. Findings show that students think pseudo conceptual, true-pseudo and false-pseudo. Pseudo conceptual thinking when students condition not understand shade when drawing fractions. Thinking true-pseudo when students in state not understand concept of drawing fractions begins with same size and broken down as much denominator fractions. Thinking false-pseudo when students state poor understanding problem and reflection for concept of drawing fractions.Abstrak: Tujuan penelitian ialah untuk mempelajari berpikir pseudo siswa dalam konsep pecahan. Data diperoleh dengan menggunakan instrumen soal dan wawancara. Soal digunakan untuk mengetahui jawaban siswa dalam memahami konsep pecahan. Wawancara digunakan untuk mengetahui alasan siswa dalam menjawab. Temuan menunjukkan bahwa siswa mengalami berpikir pseudo conceptual, true-pseudo dan false-pseudo. Berpikir pseudo conceptual saat siswa pada kondisi tidak memahami perlunya mengarsir saat menggambar pecahan. Berpikir true-pseudo saat siswa pada kondisi tidak memahami konsep menggambar pecahan berawal dari ukuran yang sama dan dipecah sebanyak penyebut pecahan. Berpikir false-pseudo saat siswa pada kondisi kurang memahami soal dan diperlukan refleksi konsep menggambar pecahan.
IDENTIFICATION ERRORS OF PROBLEM POSED BY PROSPECTIVE PRIMARY TEACHERS ABOUT FRACTION BASED MEANING STRUCTURE
Prayitno, Lydia Lia;
Purwanto, Purwanto;
Subanji, Subanji;
Susiswo, Susiswo
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 1 (2018)
Publisher : Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
The purpose of this study was to identify problem posed by prospective teachers about addition fractions based on meaning structure. This study is a quantitative descriptive to identify errors of fraction problem posed by prospective teachers based on the meaning. 46 prospective primary teachers in 8th semester in universities at Surabaya were involved in this research. Instrument in this study is a problem posing worksheet consisting two operations on fractions. Problems posed by prospective teachers were analyzed through three stages, grouping problems based on categories, structure of meaning, and analyze the error of the problem posed. The results of data analysis indicated that: (1) on the category of questions about fractions of 93.48% for 1stoperations and 97.83% for 2ndoperation, (2) on the Non-question category about operations fraction is 6.52% for 1st operations and 1.17% for 2nd operation. Grouping problems posed by prospective teachers based on structure meaning combined category is 62.79% for 1st operations and 75.56% for 2nd operation. For category of part relationships overall is 27.91% for 1st operations and 20% for 2ndoperation, while those which not belonging to the second category are 9.3% for 1st operations and 4.44% for 2nd operation. The errors of problem posed by prospective teacher based on meaning structure are (1) not related to daily life situation, (2) illogical problem, (3) unit is not appropriate, (4) fractions incompatible with the sum operation (5) gives whole number to give meaning fraction, (6) lost information, and (7) the added result exceeds the overall concept of the fraction.
EXPLORING THE EXPLANATION OF PRE-SERVICE TEACHER IN MATHEMATICS TEACHING PRACTICE
Murtafiah, Wasilatul;
Sa'dijah, Cholis;
Chandra, Tjang Daniel;
Susiswo, Susiswo;
As'ari, Abdur Rahman
Journal on Mathematics Education Vol 9, No 2 (2018)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (371.813 KB)
|
DOI: 10.22342/jme.9.2.5388.259-270
This study aims to describe the types of explanations made by pre-service teachers in mathematics learning. In this research, the types of explanations are used to describe the explanatory trends used by pre-service teachers in mathematics teaching. The descriptive qualitative research was chosen in this research. The research subjects are pre-service teacher as the students of Mathematics Education of PGRI Madiun University and Madura University who are studying Field Experience Practice. Of the 105 mathematics student, five students with a cumulative grade achievement of more than 3.50 were observed during the teaching practice at the school for approximately five meetings. The research data was obtained from observation, video recording, and interview. Data analysis was done through data condensation, data presentation, and conclusion/verification focused on pre-service teacher explanation on mathematics learning activity. The research findings indicate that the explanation used by the pre-service teacher in the mathematics learning starting from the most frequently used is the descriptive explanation (51,7%), giving of reason (36,2%) and interpretative (12,1%). Descriptive explanations are used to describe mathematical procedures. The type of reason-giving explanation is used to explain reasons based on mathematical principles. Furthermore, the interpretative explanation is used to explain the concepts and facts of mathematics.
COMPARING MODEL-BUILDING PROCESS: A MODEL PROSPECTIVE TEACHERS USED IN INTERPRETING STUDENTS’ MATHEMATICAL THINKING
Sapti, Mujiyem;
Purwanto, Purwanto;
Irawan, Edy Bambang;
As'ari, Abdur Rahman;
Sa'dijah, Cholis;
Susiswo, Susiswo;
Wijaya, Ariyadi
Journal on Mathematics Education Vol 10, No 2 (2019)
Publisher : Department of Doctoral Program on Mathematics Education, Sriwijaya University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22342/jme.10.2.7351.171-184
Mathematical thinking is an important aspect of mathematics education and, therefore, also needs to be understood by prospective teachers. Prospective teachers should have the ability to analyze and interpret students’ mathematical thinking. Comparing model is one of the interpretation models from Wilson, Lee, and Hollebrands. This article will describe the prospective teacher used the model of the building process in interpretation students' mathematical thinking. Subjects selected by considering them in following the students’ strategies in solving the Building Construction Problem. Comparing model is a model of interpretation in which a person interprets student thinking based on student work. There are two types comparing model building process prospective teacher use in interpreting students’ mathematical thinking ie. comparing work and comparing knowledge. In comparing works, prospective teachers use an external representation rubric. This is used to analyze student activities in order to provide an interpretation that is comparing the work of students with their own work. In comparing knowledge, prospective teachers use internal representation rubrics to provide interpretation by comparing the students' work with their knowledge or thought.
ANALISIS KESALAHAN NEWMAN SISWA DALAM MENYELESAIKAN SOAL NILAI MUTLAK DAN SCAFFOLDING-NYA
Budi, Bhakti Setya;
Nusantara, Toto Nusantara;
Subanji, Subanji Subanji;
Susiswo, Susiswo Susiswo
Jurnal Pendidikan Matematika Undiksha Vol 11, No 2 (2020): Jurnal Pendidikan Matematika Undiksha
Publisher : Undiksha
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.23887/jjpm.v11i2.24732
This study aims to describe the types of errors made by students in solving questions of absolute value and scaffolding based on the Newman error analysis stage. The research method used is descriptive qualitative method. The research subjects are students of class X MA Miftahul Huda Kepanjen. Sampling with purposive sampling technique. Data obtained from the results of student tests, interviews and the scaffolding process. Based on the results of the study there were 81.25% reading errors, while transformation errors were 37.5%, and process skills were 28.13%. From this research it can be concluded that the types of mistakes made by students are reading inaccuracies, comprehension errors, transformation errors, process skill errors and encoding errors. While the form of scaffolding conducted is explaining, reviewing, restructuring and developing conceptual thinking
Covid -19 : The Effects of Distance Learning in Indonesia based on a Commognitive Perspective
Adika Setyo Budi Lestari;
Toto Nusantara;
Susiswo;
Tjang Daniel Chandra;
Nonik Indrawatiningsih
Indian Journal of Forensic Medicine & Toxicology Vol. 15 No. 4 (2021): Indian Journal of Forensic Medicine & Toxicology
Publisher : Institute of Medico-legal Publications Pvt Ltd
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37506/ijfmt.v15i4.16704
Distance learning is a learning system that does not take place in one room and there is no face-to-faceinteraction between the teacher and the learner. This study aims to determine the impact of implementingdistance learning in Indonesia from a commognitive point of view. This research is a descriptive type ofresearch with a total of 543 participants who come from high school students in Pasuruan district, Indonesia.Data collection using a questionnaire. After the questionnaire is collected, it is analyzed using the Milesand Huberman method through reduction, display data, and conclusion, then it will be studied based on thecommognitive theory. The results show that based on commognitive studies, students are more likely to stillneed a visual mediator as a visible object to be used as a communication medium, its realization dependson the material context. Students need to communicate to ask questions related to material that has not beenunderstood. So it can be said that visual mediator is important during distance learning.
Upaya Guru dalam Memunculkan Disposisi Matematis Siswa pada Kelas yang Memisahkan Gender
Puspitasari, Yesy;
Sulandra, I Made;
Susiswo, Susiswo
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 7: JULI 2021
Publisher : Graduate School of Universitas Negeri Malang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.17977/jptpp.v6i7.14647
Abstract: Mathematical disposition is an important aspect for students’ success in learning mathematics because it is a strong desire, awareness, tendency, and dedication in students to think and act mathematically. However, the mathematical disposition of 40 7th-grade students of MTs Al-Qodiri Jember has not been found in classroom learning. Students lack a positive attitude towards learning mathematics. Therefore, this descriptive study with a qualitative approach aims to describe the efforts made by mathematics teachers to raise students’ mathematical dispositions throughout classroom learning. The research data sources are mathematics teachers and 40 7th-grade students at MTs Al-Qodiri of Jember.Abstrak: Disposisi matematis merupakan satu hal yang penting demi keberhasilan siswa dalam belajar matematika, karena disposisi matematis itu sendiri merupakan keinginan, kesadaran, kecenderungan, dan dedikasi yang kuat pada diri siswa untuk berpikir dan berbuat secara matematis. Namun, disposisi matematis dari  40 siswa kelas VII MTs Al-Qodiri Jember masih kurang muncul dalam pembelajaran di kelas. Siswa kurang memiliki sikap positif terhadap pembelajaran matematika. Oleh karena itu, penelitian dekriptif dengan pendekatan kualiltatif ini bertujuan untuk menggambarkan upaya apa yang dilakukan guru matematika untuk memunculkan disposisi matematis siswa selama pembelajaran di kelas. Sumber data dalam penelitian