A. Manjunatha
Sri Krishna Institute of Technology

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Assessing Effectiveness of Research for Load Shedding in Power System Raghu C.N.; A. Manjunatha
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 6: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.424 KB) | DOI: 10.11591/ijece.v7i6.pp3235-3245

Abstract

The research on loadshedding issues dates back to 1972 and till date many studies were introduced by the research community to address the issues. A closer review of existing techniques shows that still the effectiveness of loadshedding schemes are not yet benchmarked and majority of the existing system just considers the techniques to be quite symptomatic to either frequency or voltage. With an evolution of smart grids, majority of the controlling features of power system and networks are governed by a computational model. However, till date not enough evidences of potential computational model has been seen that claims to have better balance between the load shedding schemes and quality of power system performance. Hence, we review some significant literatures and highlights the research gap with the existing technqiues of load balancing that is meant for assisting the researcher to conclude after the selection process of existing system as a reference for future direction of study.
Power quality disturbances classification using complex wavelet phasor space reconstruction and fully connected feed forward neural network R. Likhitha; A. Manjunatha
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.3207

Abstract

Power quality disturbances (PQD) degrades the quality of power. Detection of these PQDs in real time using smart systems connected to the power grid is a challenge due to the integration of energy generation units and electronic devices. Deep learning methods have shown advantages for PQD classification accurately. PQD events are non-stationary and occur at discrete events. Pre-processing of power signal using dual tree complex wavelet transform in localizing the disturbances according to time-frequency-phase information improves classification accuracy.Phase space reconstruction of complex wavelet sub bands to 2D data and use of fully connected feed forward neural network improves classification accuracy. In this work, a combination of DTCWT-PSR and FC-FFNN is used to classify different complex PSDs accurately.The proposed algorithm is evaluated for its performance considering different network configurations and the most optimum structure is developed. The classification accuracy is demonstrated to be 99.71% for complex PQDs and is suitable for real time activity with reduced complexity.
The study on the effect of voltage ripple on multiphase buck converters with phase shedding control scheme for SCADA applications Mini P. Varghese; A. Manjunatha; T. V. Snehaprabha
Bulletin of Electrical Engineering and Informatics Vol 10, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i4.2798

Abstract

Voltage regulator modules (VRM) need to have low output voltage ripple and tight efficiency to power advanced microprocessors. This paper explains a phase shedding technique to enhance efficiency and its impact on output voltage ripple. In this study, analysis was done on a 4-phase buck converter which is having an input voltage of 45-65 V and delivers an output of 9 V, 12A with a switching frequency of 200Khz. The phase shedding control scheme is suitable for applications such as power sources for programmable logic controllers, which is a part of SCADA systems, which requires a low voltage and high current power supply. Working of a multiphase buck converter with phase shedding is modelled and verified using Matlab/Simulink software. The simulation results show the effect of the phase shedding technique on efficiency in varying load conditions and the effect of an increase of the voltage ripple at the output.
Method for improving ripple reduction during phase shedding in multiphase buck converters for SCADA systems Mini P. Varghese; A. Manjunatha; T. V. Snehaprabha
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp29-36

Abstract

In the current digital environment, central processing unit (CPUs), field programmable gate array (FPGAs), application-specific integrated circuit (ASICs), as well as peripherals, are growing progressively complex. On motherboards in many areas of computing, from laptops and tablets to servers and Ethernet switches, multiphase phase buck regulators are seen to be more common nowadays, because of the higher power requirements. This study describes a four-stage buck converter with a phase shedding scheme that can be used to power processors in programmable logic controller (PLCs). The proposed power supply is designed to generate a regulated voltage with minimal ripple. Because of the suggested phase shedding method, this power supply also offers better light load efficiency. For this objective, a multiphase system with phase shedding is modeled in MATLAB SIMULINK, and the findings are validated.