Ali Okto
Department of Geological Engineering, Halu Oleo University, Kendari, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Characteristics of Chromite Deposits at North Kabaena District, Bombana Regency, Southeast Sulawesi Province, Indonesia Hasria; Masri; Suryawan Asfar; Arisona; Ali Okto; La Ode Restele; La Ode Ngkoimani; Rika Yustika
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 2 (2021): JGEET Vol 06 No 02 : June (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.2.6424

Abstract

The study area is located in North Kabaena District, Bombana Regency, Southeast Sulawesi. This paper is aimed to describe characacristics of chromite deposits. This study is conducted in three stages, three stages including desk study, field work and laboratory analysis. Desk study mainly covers literature reviews. Field work includes mapping of surface geology and sampling of representative rocks types. Laboratory analysis includes the petrologic observation of handspecimen samples, petrographic analysis of the thin section and ore microscopy for polished section. The results of petrographic analysis show that olivine minerals are generally replaced by minerals orthopyroxene and has been alterated by lizardite type serpentine veins with a fractured structure. The mineral olivine is also replaced by the mineral chrysotile as a secondary mineral with a fibrous structure. Based on ore microscopy analysis show that chromite has generally experienced a lateritification process and has been replaced by magnetite, hematite and geotite minerals. Chromite has experience process of weathering and alteration from its source rock caused by tectonics that occurred in the study area. The results shows that the characteristics of chromite deposits in North Kabaena District Chromite deposits has generally encountered in peridotite rock which have a grain size of 0.3-20 cm. Furthermore, chromite deposits in the study area are also encountered in podiform deposits, distributed locally and shows podiform to tubular shape with the dimensions of 30-60cm.
Serpentinization Study On Ultramafic Rock at Morombo Area, Lasolo Islands District, North Konawe Regency, Southeast Sulawesi, Indonesia Hasria; Febiyanti; Masri; Ali Okto; Erzam S. Hasan; La Hamimu; Sawaludin; La Ode Muhammad Iradat Salihin; Wahab
Journal of Geoscience, Engineering, Environment, and Technology Vol. 7 No. 1 (2022): JGEET Vol 07 No 01 : March (2022)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2022.7.1.6643

Abstract

The research is in Morombo area, North Konawe Regency, Southeast Sulawesi. The purpose of this study was to determine the characteristics of serpentinized ultramafic rock and serpentine paragenesis. Research was conducted using field observations and laboratory analysis consisting of petrographic and geochemical analysis in the form of X-Ray Fluorosence (XRF). Petrographic analysis was carried out to identify the mineral content and textures in the rock and to determine the percentage of serpentine mineral presence. Both of these rocks are petrographically dominated by primary minerals olivine and clinopyroxine and secondary minerals namely lizardite, chrysotile, antiorite and opaque minerals. The XRF analysis was to determine the elements of Ni, Fe, Co, MgO, SiO2, CaO, Al2O3 and P in ultramafic rocks. The results of petrographic analysis show that serpentinized ultramafic rocks in the study area consist of serpentinized dunite and serpentinized peridotite. The formation of clay minerals in rocks does not occur because of the low serpentinization process in the rock. The results of XRF analysis showed that all samples in the bedrock showed Ni content above 0.2%. This is caused by the enrichment of Ni which is interpreted as a result of the serpentinization process along with the formation of lizardite in the rock. The serpentinization sub-processes in the study area comprised by hydration, serpentine recrystallization, and deserpentinization. Serpentine paragenesis is formed from the mid-oceanic ridge ocean floor, the orogenic phase to weathering. Substitution of Mg by Ni in ultramafic rocks will produce Ni-Serpentin. It is estimated that in the research area lizardite and chrysotile lizardite and chrysotile are the causes of Ni enrichment in bedrocks. The serpentinization characteristics of ultramafic rocks in the study area show a low to moderate level of serpentinization.