Claim Missing Document
Check
Articles

Found 15 Documents
Search

A Novel Method for Rotor Field-Oriented Control of Single-Phase Induction Motor M. Jannati; T. Sutikno; N. R. N. Idris; M. J. A. Aziz
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 2: April 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1009.208 KB) | DOI: 10.11591/ijece.v5i2.pp205-212

Abstract

This paper presents a novel rotor field-oriented control (RFOC) method for asymmetrical single-phase induction motor (SPIM). It is shown in this paper that by using a suitable transformation matrix (TM) for stator current variables, the asymmetrical equations of SPIM are transformed into symmetrical equations. Based on this similarity, a novel vector conrol technique for SPIM is presented. Performance of the proposed method is assessed using MATLAB/SIMULINK software. Simulation results showed the excellence speed and torque responses obtained using the proposed technique.
Differential Evolution Based Solar Photovoltaic Array Reconfiguration Algorithm for Optimal Energy Extraction during Partial Shading Condition M. A. I. A. Tazally; M. F. N. Tajuddin; A. Azmi; S. M. Ayob; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (827.551 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1397-1405

Abstract

To increase energy yield from an installed photovoltaic (PV) array, particularly during partial shading condition (PSC), a new technique based on reconfigurable PV array interconnection is proposed in this work. The proposed technique works by dynamically changing the interconnection of PV modules to form a new configuration using a switching matrix inside the array. The criteria of good reconfigurable PV array interconnection techniques depend on the efficiency and accuracy of the control algorithm to optimally reconfigure the PV array to maximize the total output power. Hence, this paper proposes a new control algorithm using differential evolution (DE) for photovoltaic array reconfiguration (PVAR). To verify the superiority of the proposed algorithm, DE is compared with the particle swarm optimization (PSO) algorithm. Results confirm that DE performs well in terms of the amount of energy production during PSC. For all the nine shading patterns tested on a 3 × 3 PV array, DE yields 1% to 5% more power than PSO.
Design and development of SEPIC DC-DC boost converter for photovoltaic application Ibrahim Alhamrouni; M. K. Rahmat; F. A. Ismail; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.957 KB) | DOI: 10.11591/ijpeds.v10.i1.pp406-413

Abstract

This study highlights a new construction of SEPIC DC-DC converter. The proposed converter aims for some features such as high voltage gain, continuous input current and reduce stress on the power switch. In addition, the circuit construction ensurs the simplicity in design along with signicant cost saving, since its components are readily available and smaller in size compared to the off-shelf components. This type of converter can adjust the DC voltage to maintain its output voltage to be constant. Typically, SEPIC operated in equipment that uses battery and also in wide range input voltage DC power supply. The converter is designed for renewable energy application where it is able to regulate the output voltage of the Photovoltaic (PV). The converter has been analysed based on different switching frequencies and duty cycle. Thus the outcome of the proposed converter can be achieved by using D=0.45 and fs=30 kHz. The proposed converter is supplied by 26V as an input voltage and produces 300V output and gives 94% of efficiency.
Dynamic simulation of three-phase nine-level multilevel inverter with switching angles optimized using nature-inspired algorithm W. T. Chew; W. V. Yong; J. S. L. Ong; J. H. Leong; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp325-333

Abstract

This paper recommends the use of grasshopper optimization algorithm (GOA), a nature-inspired optimization algorithm, for optimizing switching-angle applied to cascaded H-bridge multilevel inverter (CHBMLI). Switching angles are selected based on the minimum value of the objective function formulated using the concept of selective harmonic minimization pulse width modulation (SHMPWM) technique. MATLAB/Simulink-PSIM dynamic co-simulation conducted on a 3-phase 9-level CHBMLI shows that the CHBMLI controlled using GOA derived switching-angle is able to respond to varying modulation index demand and synthesize an AC staircase output voltage waveform with the desired fundamental harmonic and minimized selected low-order harmonics. Compared to Newton Raphson (NR) technique, GOA is able to find optimum switching-angle solutions over a wider modulation index range. Compared to Genetic Algorithm (GA), GOA is able to find global minima with higher probability. The simulation results validate the performance of GOA for switching-angle calculation based on the concept of SHMPWM.
Non-iterative Wide-modulation-index Switching-angle Calculation Techniques for 15-level Binary Cascaded H-bridge Multilevel Inverter J. A. Soo; M. S. Chye; Y. C. Tan; S. L. Ong; J. H. Leong; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v8.i1.pp93-99

Abstract

Cascaded H-bridge multilevel inverter (CHBMI) is able to generate a staircase AC output voltage with low switching losses. The switching angles applied to the CHBMI have to be calculated and arranged properly in order to minimize the total harmonic distortion (THD) of the output voltage waveform. In this paper, two non-iterative switching-angle calculation techniques applied for a 15-level binary asymmetric CHBMI are proposed. Both techniques employ a geometric approach to estimate the switching angles, and therefore, the generated equations can be solved directly without iterations, which are usually time-consuming and challenging to be implemented in real-time. Apart from this, both techniques are also able to calculate the switching angles for a wide range of modulation index. The proposed calculation techniques have been validated via MATLAB simulation and experiment.
Modelling and design of PID controller for voltage control of AC hybrid micro-grid Ibrahim Alhamrouni; M. A. Hairullah; N. S. Omar; Mohamed Salem; Awang Jusoh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (538.29 KB) | DOI: 10.11591/ijpeds.v10.i1.pp151-159

Abstract

The growing demand for power that needs to be remotely transported creates a fast and effective solution of Distributed Energy Resources (DERs) integration. Distributed Energy Resources (DERs) can lessen the electrical and physical distance between load loss and generator, transmission and distribution, and the level of carbon emissions. Such challenges can be overcome by using microgrids, which combine various types of DERs without interrupting the grid operation, allowing the power system to detect and control the errors more efficiently, allowing the shedding load and automatic switching through control algorithms so that blackouts and power restoration times are shortened, enabling either a relevant grid or islanded mode operation, and improving system reliability and flexibility via DERs. This work includes modelling of hybrid AC micro-grid as well as presenting an efficient control technique for micro-grid. In the present work the performance of hybrid AC microgrid system is analyzed in the islanded mode. Photovoltaic system and fuel cell stack are used for the development of microgrid. It also includes microgrid control objectives and the most common problems encountered and their solutions. The employed control technique is able to control the output voltage at a desired and standard value. The control strategies of the hybrid AC microgrid are simulated in MATLAB/SIMULINK.
An Improved of Multiple Harmonic Sources Identification in Distribution System with Inverter Loads by Using Spectrogram M.H. Jopri; A.R. Abdullah; M. Manap; M.R. Yusoff; T. Sutikno; M.F. Habban
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 4: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i4.pp1355-1365

Abstract

This paper introduces an improved of multiple harmonic sources identification that been produced by inverter loads in power system using time-frequency distribution (TFD) analysis which is spectrogram.  The spectrogram is a very applicable method to represent signals in time-frequency representation (TFR) and the main advantages of spectrogram are the accuracy, speed of the algorithm and use low memory size such that it can be computed rapidly. The identification of multiple harmonic sources is based on the significant relationship of spectral impedances which are the fundamental impedance (Z1) and harmonic impedance (Zh) that extracted from TFR. To verify the accuracy of the proposed method, MATLAB simulations carried out several unique cases with different harmonic producing loads on IEEE 4-bus test feeder cases. It is proven that the proposed method is superior with 100% correct identification of multiple harmonic sources. It is envisioned that the method is very accurate, fast and cost efficient to localize harmonic sources in distribution system.
Fuzzy-PI Torque and Flux Controllers for DTC with Multilevel Inverter of Induction Machines N. M. Nordin; N. R. N. Idris; N. A. Azli; M. Z. Puteh; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 2: 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In this paper the performance of flux and torque controller for a Direct Torque Control of Cascaded H-bridge Multilevel Inverter (DTC-CMLI) fed induction machines are investigated. A Fuzzy-PI with fixed switching frequency is proposed for both torque and flux controller to enhance the DTC-CMLI performance.  The operational concepts of the Fuzzy-PI with the fixed switching frequency controller of a DTC-MLI system followed by the simulation results and analysis are presented. The performance of the proposed system is verified via MATLAB/Simulink©. The proposed system significantly improves the DTC drive in terms of dynamic performance, smaller torque and flux ripple, and lower total harmonic distortion (THD).DOI: http://dx.doi.org/10.11591/ijpeds.v5i2.6581
Analysis of Three and Five-phase Double Stator Slotted Rotor Permanent Magnet Generator (DSSR-PMG) R. Suhairi; R. N. Firdaus; F. Azhar; K.A. Karim; A. Jidin; A. Khamis; Z. Ibrahim; T. Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v8.i1.pp213-221

Abstract

This paper discusses the performance of three and five-phase double stator slotted rotor permanent magnet generator (DSSR-PMG). The objective of this research is to propose  five-phase DSSR-PMG structure that could minimize output voltage ripple compared to three phase. In this research Finite Element Analysis (FEA) is used to simulate the characteristic of the three and five-phase permanent magnet generator at various speeds. The characteristic of back-EMF, flux linkage, cogging torque and flux density for three and five-phase configurations is presented. As a result, five-phase DSSR-PMG shows a lower cogging  torque and voltage ripple compared to three-phase. The cogging torque for five-phase is 80% lower than three-phase DSSR-PMG and the ripple voltage (peak to peak) of back-EMF in five-phase is 2.3% compared to the three-phase DSSR-PMG which is 55%.
Single-phase Multilevel Inverter with Simpler Basic Unit Cells for Photovoltaic Power Generation M. S. Chye; J. A. Soo; Y. C. Tan; M. Aizuddin; S. Lee; M. Faddle; S. L. Ong; T. Sutikno; J. H. Leong
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 4: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i4.pp1233-1239

Abstract

This paper presents a single-phase multilevel inverter (MLI) with simpler basic unit cells. The proposed MLI is able to operate in two modes, i.e. charge mode to charge the batteries, and inverter mode to supply AC power to load, and therefore, it is inherently suitable for photovoltaic (PV) power generation applications. The proposed MLI requires lower number of power MOSFETs and gate driver units, which will translate into higher cost saving and better system reliability. The power MOSFETs in the basic unit cells and H-bridge module are switched at near fundamental frequency, i.e. 100 Hz and 50 Hz, respectively, resulting in lower switching losses. For low total harmonic distortion (THD) operation, a deep scanning method is employed to calculate the switching angles of the MLI. The lowest THD obtained is 8.91% at modulation index of 0.82. The performance of the proposed MLI (9-level) has been simulated and evaluated experimentally. The simulation and experimental results are in good agreement and this confirms that the proposed MLI is able to produce an AC output voltage with low THD.