Mussa Mabrok
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Design of Wide-band Power Amplifier based on Power Combiner Technique with Low Intermodulation Distortion Mussa Mabrok; Zahriladha Zakaria; Nasrullah Saifullah
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 5: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.293 KB) | DOI: 10.11591/ijece.v8i5.pp3504-3511

Abstract

RF power amplifiers are one of challenging blocks in designing radio frequency transceivers, this is due to non-linearity behavior of power amplifiers that leads to inter-modulation distortion. This paper presents the design of wide-band power amplifier which combined with parallel coupled line band pass filter at the input and output of power amplifier to allow the only required frequency band to pass through the power amplifier. Class-A topology and ATF-511P8 transistor are used in this design. Advanced Design System software used as a simulation tool to simulate the designed wide-band power amplifier. The simulation results showed an input return loss (S11) which less than -10dB, and gain (S21) is higher than 10 dB over the entire frequency band and considers as flat as well. The designed amplifier is stable over the bandwidth (K>1). Inter-modulation distortion is -56.919dBc which is less than -50dBc with 10dBm input power. The designed amplifier can be used for the microwave applications which include weather radar, satellite communication, wireless networking, mobile, and TV.
Switchable dual-band bandpass filter based on stepped impedance resonator with U-shaped defected microstrip structure for wireless applications Mussa Mabrok; Zahriladha Zakaria; Yully Erwanti Masrukin; Tole Sutikno; A. R. Othman; Nurhasniza Edward
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 2: April 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i2.11637

Abstract

This paper presents a new technique in designing the switchable dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Wideband bandpass filter designed based on stepped impedance resonator at frequency of 3 GHz. To eliminate the interference from existing system that operates in the same frequency band, a defected microstrip structure applied and implemented to produce the notch response. In order to generate the switchable characteristic, the PIN diode was introduced at the dual-band filter. It exhibits that the measured results for switchable attributes when the diode is at OFF state, the wide passband is produced with the fractional bandwidth of 62.1 % centered at 2.9 GHz. Meanwhile, for the diode in ON state, the dual-passband has produced which centered at 2.5 GHz and 3.45 GHz. The experimental results showed good agreement with the simulation results. This structure is very useful for wireless communication systems and its applications.
Wideband power amplifier based on Wilkinson power divider for s-band satellite communications Mussa Mabrok; Zahriladha Zakaria; Tole Sutikno; Ammar Alhegazi
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.684 KB) | DOI: 10.11591/eei.v8i4.1552

Abstract

This paper presents design and simulation of wideband power amplifier based on multi-section Wilkinson power divider. Class-A topology and ATF-511P8 transistor have been used. Advanced Design System (ADS) software used to simulate the designed power amplifier. The simulation results show an input return loss (S11)<-10dB, gain (S21)>10 dB over the entire bandwidth, and an output power around 28dBm at the Centre frequency of 3GHz. The designed amplifier is stable over the entire bandwidth (K>1). Inter-modulation distortion is -65.187dBc which is less than -50dBc. The designed amplifier can be used for the microwave applications which include weather radar, satellite communication, wireless networking, mobile, and TV.
Wideband power amplifier based on Wilkinson power divider for s-band satellite communications Mussa Mabrok; Zahriladha Zakaria; Tole Sutikno; Ammar Alhegazi
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.684 KB) | DOI: 10.11591/eei.v8i4.1552

Abstract

This paper presents design and simulation of wideband power amplifier based on multi-section Wilkinson power divider. Class-A topology and ATF-511P8 transistor have been used. Advanced Design System (ADS) software used to simulate the designed power amplifier. The simulation results show an input return loss (S11)<-10dB, gain (S21)>10 dB over the entire bandwidth, and an output power around 28dBm at the Centre frequency of 3GHz. The designed amplifier is stable over the entire bandwidth (K>1). Inter-modulation distortion is -65.187dBc which is less than -50dBc. The designed amplifier can be used for the microwave applications which include weather radar, satellite communication, wireless networking, mobile, and TV.
High efficiency Doherty power amplifiers for modern wireless communication systems: A brief review Mussa Mabrok; Zahriladha Zakaria; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1855-1860

Abstract

Dueto the high peak to average power ratio (PAPR) of modern modulated signals, power amplifiers (PAs) have been forced to operate at the back-off (BO) region of their saturation power in order to avoid signal clipping and distortion. However, classical PAs suffer from low efficiency in the BO region operation. Therefore, efficiency has to be enhanced in that region. Many techniques have been proposed. Among them, the Doherty power amplifier (DPA) is considered as the most suitable technique due to its simple structure and high performance. However, its conventional design is limited to a 6 dB BO level, which does not satisfy the requirements of modern communication systems. In this paper, a brief review of the most significant techniques of high-efficiency DPA is presented. First, DPA topology and its operation principles are briefly discussed. Second, efficiency enhancement techniques such as an asymmetrical DPA, output combiner modification, gate bias adaption, offset line optimization, and multi-way DPA were discussed. The study shows that the most suitable, simple, and effective solution is an asymmetrical approach. However, it needs to be investigated in terms of bandwidth in order to meet the efficiency-bandwidth requirements of modern wireless communication systems such as 5G.
Dual-band bandpass filter based on two U-shaped defected microstrip structure Mussa Mabrok; Zahriladha Zakaria; Yully Masrukin; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 2: May 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i2.pp909-918

Abstract

This paper presents design of dual-band bandpass filter by integrating conventional quarter-wavelength short circuit stubs bandpass filter with U-shaped defected microstrip structure notch filter. Based on the parametric analysis, it is found that high attenuation level can be achieved by using two U-shaped defected microstrip structure separated by specific distance. The designed circuit simulated using advanced design system and fabricated based on Roger 4350B. The simulation results are in good agreement with measured results. The designed filter covered two pass bands centered at 2.51 GHz and 3.59 GHz with 3-dB fractional bandwidth of 15.94% and 15.86%, respectively, return losses better than 15 dB, and insertion losses better than 1 dB. The designed device can be used for wireless communication applications such as WLAN and WiMAX.
High efficiency Doherty power amplifier based on asymmetrical matching network Mussa Mabrok; Zahriladha Zakaria; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 2: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i2.pp910-917

Abstract

Doherty power amplifier (DPA) with high efficiency at the output power back off is highly demanded for modern wireless communication systems to achieve high data rates and reduce the power consumption and operation costs. This paper presents a new design strategy for enhancing DPA’s back-off efficiency. New design strategy called asymmetrical matching network is used to achieve asymmetric operation, which helps to compensate for the low power delivered by the peaking stage in the conventional DPA. The simulation results showed an enhancement in the back-off efficiency, where the proposed design is able toachieve 46-52% drain efficiency at 8 dB output power back-off while maintains high efficiency of 73-80 % at saturation over the designed bandwidth of 3.4-3.6 GHz. The proposed design is suitable for high efficiency sub-6 GHz fifth-generation wireless applications.