Kritsanapong Somsuk
Udon Thani Rajabhat University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

The new integer factorization algorithm based on Fermat’s Factorization Algorithm and Euler’s theorem Kritsanapong Somsuk
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (444.06 KB) | DOI: 10.11591/ijece.v10i2.pp1469-1476

Abstract

Although, Integer Factorization is one of the hard problems to break RSA, many factoring techniques are still developed. Fermat’s Factorization Algorithm (FFA) which has very high performance when prime factors are close to each other is a type of integer factorization algorithms. In fact, there are two ways to implement FFA. The first is called FFA-1, it is a process to find the integer from square root computing. Because this operation takes high computation cost, it consumes high computation time to find the result. The other method is called FFA-2 which is the different technique to find prime factors. Although the computation loops are quite large, there is no square root computing that included into the computation. In this paper, the new efficient factorization algorithm is introduced. Euler’s theorem is chosen to apply with FFA to find the addition result between two prime factors. The advantage of the proposed method is that almost of square root operations are left out from the computation while loops are not increased, they are equal to the first method. Therefore, if the proposed method is compared with the FFA-1, it implies that the computation time is decreased, because there is no the square root operation and the loops are same. On the other hand, the loops of the proposed method are less than the second method. Therefore, time is also reduced. Furthermore, the proposed method can be also selected to apply with many methods which are modified from FFA to decrease more cost.
Improving the initial values of VFactor suitable for balanced modulus Kritsanapong Somsuk
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6446-6452

Abstract

The aim of this study is to estimate the new initial values of VFactor. In general, this algorithm is one of the members in a group of special proposed integer factorization algorithm. It has very high performance whenever the result of the difference between two prime factors of the modulus is a little, it is also called as balanced modulus. In fact, if this situation is occurred, RSA which is a type of public key cryptosystem will be broken easily. In addition, the main process of VFactor is to increase and decrease two odd integers in order to compute the multiplication until the targets are found. However, the initial values are far from the targets especially that the large value of the difference between two prime factors that is not suitable for VFactor. Therefore, the new initial values which are closer to the targets than the traditional values are proposed to decrease loops of the computation. In experimental results, it is shown that the loops can be decreased about 26% for the example of 256 bits-length of modulus that is from the small result of the difference between prime factors.
Authentication system for e-certificate by using RSA’s digital signature Kritsanapong Somsuk; Mongkhon Thakong
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.17278

Abstract

Online learning and teaching become the popular channel for all participants, because they can access the courses everywhere with the high-speed internet. E-certificate is being prepared for everyone who has participated or passed the requirements of the courses. Because of many benefits frome-certificate, it may become the demand for intruders to counterfeit the certificate. In this paper, Rivest-Shamir-Adleman (RSA)’s digital signature is chosen to signe-certificate in order to avoid being counterfeited by intruders. There are two applications to managee-certificate. The first application is the signing application to sign the sub image including only participant’s name in e-certificate. In general, the file of digital signature is divided frome-certificate. That means, both of them must be selected to compare each other in checking application. In fact, the solution will be approved when each pixel of participant’s name is equal to each part from the decrypted message at the same position. In experimental session, 40 e-certificatesare chosen for the implementation. The results reveal that the accuracy is 100% and both of signing and checking processes are completed rapidly fast, especially when signing application is applied with Chinese remainder theorem (CRT) or the special technique of CRT. Therefore, the proposed method is one of the best solutions to protect e-certificate from the forgery by intruders.