Claim Missing Document
Check
Articles

Found 6 Documents
Search

Assessment of off-shore wind turbines for application in Saudi Arabia Arunachalam Sundaram; Abdullahi Abubakar Mas’ud; Hassan Z. Al Garni; Surajudeen Adewusi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.761 KB) | DOI: 10.11591/ijece.v10i5.pp4507-4513

Abstract

This paper presents models and economic analysis of ten different wind turbines for the region of Yanbu, Saudi Arabia using the hybrid optimization models for energy resources (HOMER) software. This study serves as a guide for decision makers to choose the most suitable wind turbine for Yanbu to meet the target of 58.7GW of renewable energy as part of Saudi Vision 2030. The analysis was carried out based on the turbines initial capital cost, operating cost, net present cost (NPC) and the levelized cost of energy (LCOE). Additionally, the wind turbines were compared based on their electricity production, excess energy and the size of the storage devices required. The results show that Enercon E-126 EP4 wind turbine has the least LCOE (0.0885 $/kWh) and NPC ($23.8), while WES 30 has the highest LCOE (0.142 $/kWh) and NPC ($38.3) for a typical load profile of a village in Yanbu.
A review of building integrated photovoltaic: case study of tropical climatic regions Mu’azu Mohammed Abdullahi; Abdullahi Abubakar Mas’ud; Ibrahim Abubakar Mas’ud; Jorge Alfredo Ardila-Rey; Firdaus Muhammad-Sukki; Ridoan Karim; Ahmad Shakir Mohd Saudi; Nurul Aini Bani; Asan Vernyuy Wirba
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp474-488

Abstract

The building integrated photovoltaic (BIPV) system have recently drawn interest and have demonstrated high potential to assist building owners supply both thermal and electrical loads. In this paper, the BIPV technology has been reviewed, in terms of its performance, efficiency and power generation capacity. Specifically, the applications of the BIPV in tropical climate regions have been discussed, together with its prospects and challenges. For these schemes to be implemented in a tropical climatic region, the following issues must be considered: 1) Certain studies must be done relating to electrical load demand, predicted PV output, location of the buildings and its integration and constraints associated with roof design; 2) For the highest energy production from solar PV, the solar collectors need to be with the right tilt depending on the location; 3) Design criteria such as safety, efficiency, durability, flexibility and constructive issues need to be considered; 4) The government of such countries must train electricians and carpenters on PV installations; 5) The BIPV roofing must perform same function as normal roofing materials, such as noise protection, water tightness, insulation and climate protection, and 6) As practiced around the world, these countries must establish design standards for the BIPV.
Rotating blade faults classification of a rotor-disk-blade system using artificial neural network Abdullahi Abubakar Mas’ud; Ahmad Jamal; Surajuddeen Adewusi; Arunachalam Sundaram
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1900-1911

Abstract

In this paper, the artificial neural network (ANN) has been utilized for rotating machinery faults detection and classification. First, experiments were performed to measure the lateral vibration signals of laboratory test rigs for rotor-disk-blade when the blades are defective. A rotor-disk-blade system with 6 regular blades and 5 blades with various defects was constructed. Second, the ANN was applied to classify the different x- and y-axis lateral vibrations due to different blade faults. The results based on training and testing with different data samples of the fault types indicate that the ANN is robust and can effectively identify and distinguish different blade faults caused by lateral vibrations in a rotor. As compared to the literature, the present paper presents a novel work of identifying and classifying various rotating blade faults commonly encountered in rotating machines using ANN. Experimental data of lateral vibrations of the rotor-disk-blade system in both x- and y-directions are used for the training and testing of the network.
Potential of floating solar technology in Malaysia Mohd Alif Saifuddin Jamalludin; Firdaus Muhammad Sukki; Siti Hawa Abu Bakar; Fadzliana Ramlee; Abu Bakar Munir; Nurul Aini Bani; Mohd Nabil Muhtazaruddin; Abdullahi Abubakar Mas’ud; Jorge Alfredo Ardila Rey; Ahmad Syahrir Ayub; Nazmi Sellami
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.224 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1638-1644

Abstract

Solar energy is a natural source of energy and is tremendously abundant. The concept of floating solar is to fulfil and to support the existing energy supply in order to enhance the human life. The floating solar exploits the massive availability of ocean region and the severe unavailability of land. The main purpose of this paper is to evaluate the potential of floating solar to be deployed in coastal or infield in Malaysia. It was predicted that such system could generate around 14,530 MWh per annum in Malaysia. It can be concluded that floating solar could be one of the most important ocean structures in the future because it is reliable, flexible and has virtually low cost production comparing with other ocean structures
Design of Solar Powered Charging Backpack Jonas Taverne; Firdaus Muhammad-Sukki; Ahmad Syahir Ayub; Nazmi Sellami; Siti Hawa Abu-Bakar; Nurul Aini Bani; Abdullahi Abubakar Mas’ud; Draco Iyi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i2.pp848-858

Abstract

This paper demonstrated a step by step process in designing a solar powered charging backpack that is capable of charging a mobile phone efficiently. A selection of existing products available on the market were reviewed and compared to ascertain the cost, size, and output capabilities. Next, the solar cell types and regulators were compared and their respective merits were also investigated. The charging system was then designed and tested before being integrated with the backpack. The results clearly showed that the system managed to charge the mobile phone. However, it was found that the excessive power dissipation has caused the linear regulator to generate significant heat.
Improved design of a DC-DC converter in residential solar photovoltaic system Mantas Darameičikas; Firdaus Muhammad Sukki; Siti Hawa Abu Bakar; Nazmi Sellami; Nurul Aini Bani; Mohd Nabil Muhtazaruddin; Abdullahi Abubakar Mas’ud; Jorge Alfredo Ardila Rey
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.929 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1476-1482

Abstract

With growing demand in renewable energy, solar photovoltaic (PV) technology is becoming more popular. A number of research has been carried out to increase the efficiency of the PV system. One of them is improving the Switch Mode Power Supplies (SMPS) performance to ensure maximum solar energy extraction. This paper looks at buck type SMPS suitability for use in solar PV installed in residential houses. The main issues that affect the response from the output are identified. The work will utilise the LT SPICE software to carry out the simulation. The primary objective of the study is to design an improved converter controller which is more robust and is able to maintain constant output. The emphasis is on good efficiency, stability and low output voltage ripple. This could be achieved by using the current mode control (CMC) techniques – an alternative design to the voltage mode control technique (VMC). Results obtained via simulations reveal strong evidence of CMC superiority over the VMC.