Mohd Noor Abdullah
Universiti Tun Hussein Onn Malaysia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 10 Documents
Search

Performance enhancement of solar powered floating photovoltaic system using arduino approach Nur Amirah Abdul Jamil; Siti Amely Jumaat; Suriana Salimin; Mohd Noor Abdullah; Ahmad Fateh Mohamad Nor
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1244.283 KB) | DOI: 10.11591/ijpeds.v11.i2.pp651-657

Abstract

This paper presents Performance Enhancement of Solar Powered Floating Photovoltaic System using Arduino Approach. In the project, an Arduino nano as a main controller of the system. The objective of this project to monitor performance of the voltage, current and power output respectively. Furthermore, the prototype of the research is testing in two conditions: on water surface and on a land area. Based on the results, the power of the photovoltaic on the water surface is increased compared on the land area. The conclusion for this project is it can generate electricity using floating photovoltaic and the same time to monitor output of the system.
Modeling of 185W of mono-crystalline solar panel using MATLAB/Simulink Siti Amely Jumaat; Ong Wei Liang; Mohd Noor Abdullah; Nur Hanis Radzi; Rohaiza Hamdan; Suriana Salimin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.975 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2005-2012

Abstract

This paper presents a modeling of 185W Mono-crystalline Solar Panel Using Matlab/Simulink approach. The objective of this project to carried out the efficiency and performance of Solar Panel. The type of solar panel in this project is a mono-crystalline by the SC Origin Company. A temperature and irradiance are the input parameters of the system. The outputs of the system are voltage, current and power. In addition, the data of temperature and irradiance from August to December 2017 by RETScreen Website. This data are used as an inout for PV System and the curve of I-V and P-V as the output. The data are collected at location 1.86° N, 103.09° E which is in Bandar Penggaram, Johor. The output result of I-V and P-V will be used to compare with the reference.
Optimal design of a single-phase APF based on PQ theory Dur Muhammad Soomro; Sager K. Alswed; Mohd Noor Abdullah; Nur Hanis Mohammad Radzi; Mazhar Hussain Baloch
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (621.348 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1360-1367

Abstract

The instantaneous active and reactive power (PQ) theory is one of the most widely used control theory for shunt active power filter (SAPF), which can be implemented in single-phase and three-phase systems. However, the SAPF with PQ theory still had ability to improve to become more efficient. This paper presents the optimal design of a single-phase SAPF in terms of reducing the current harmonic distortion and power loss in voltage source inverter (VSI) controlled with the semiconductor switching devices IGBT, MOSFET and Hybrid (combination of IGBT and MOSFET). In order to reduce the switching frequency and power loss of VSI, instead of using single-band hysteresis current controller (HCC), double-band HCC (DHCC) and triple-band HCC (THCC) is used in the SAPF. The designed SAPF is tested with different non-linear loads to verify the results by using MATLAB Simulink.
Application of artificial neural network in sizing a stand-alone photovoltaic system: a review Ahmad Fateh Mohamad Nor; Suriana Salimin; Mohd Noor Abdullah; Muhammad Nafis Ismail
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (292.943 KB) | DOI: 10.11591/ijpeds.v11.i1.pp342-349

Abstract

Artificial Neural Network (ANN) techniques are becoming useful in the current era due to the vast development of the current computer technologies. ANN has been used in various fields especially in the field of science and technology. One of the advantage that makes ANN so interesting is the ANN’s ability to learn the input and output relationship even though the relationship is non-linear. In addition, ANN is also useful for modelling, optimization, prediction, forecasting, and controlling systems. The main objective of this paper is to present a review of the ANN techniques for sizing a stand-alone photovoltaic (PV) system. The review in this paper shows the potential of ANN as a design tool for a stand-alone PV. In addition, ANN is very useful to improve the sizing process of the stand-alone PV system. The sizing process is of paramount importance to a stand-alone PV system in order to make sure the system can generate ample electrical energy to supply the load demand.
Design of parabolic solar dish tracking system using arduino Asif Ahmed Rahimoon; Mohd Noor Abdullah; Dur Muhammad Soomro; Murad Yahya Nassar; Z.A. Memon; P.H. Shaikh
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp914-921

Abstract

This paper demonstrates the designing parameters of a solar parabolic dish prototype for rustic areas with great solar irradiance rate availability, where have no access of electricity services or low-income people survives to buy a stove (electric or gas). The solar parabolic dish prototype intends a solution against these types of remedies and pursues solar light to work. The parabolic dish has a polished surface, where the solar radiations fall and collected at a single concentrated focal point. At this point the collected form of energy is used to derive different thermal applications like as; cooking & heating with single and dual axis schemes. This paper discusses the important stages of dual axis prototype; implementation, solar location strategy, the analysis in terms of theory, structural design & material. The dual axis prototype is implemented through the help of Arduino chipboard that is easily in maintenance, along with that this prototype is configured with anti-lock H-bridge (L298) module to overcome the control circuit complexity and AVR modules. Two rotational motors of 12V are installed on 4*4ft designed aluminum frame with a dual-axis tracking system. The jerks among trackers are also reduced with this prototype which maintains the experimental declination angle about .To finish, this paper results that parabolic solar dish tracker obtains 3.43% improved power efficiency in comparison of photovoltaic panel tracker.
Modeling of 120W Monocrystalline Photovoltaic Module using MATLAB Simulink Siti Amely Jumaat; Adhwa Amsyar Syazwan Ab Majid; Mohd Noor Abdullah; Nur Hanis Radzi; Rohaiza Hamdan; Suriana Salimin
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 1: July 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i1.pp74-81

Abstract

This project aims to model a solar Photovoltaic (PV) Module using MATLAB Simulink. In Renewable Energy (RE) field, many studies have been carried out to determine the level of efficiency and performance of a specific PV module. Therefore, this research will carry out the modeling of the 120W Monocrystalline Photovoltaic Module by Su-Kam Solar using MATLAB Simulink to determine the efficiency and performance. The input parameters that consists of Solar Irradiance (G) and Temperature (T) data will be collected at location 1.8635° N, 103.1089° E which is in Parit Raja, Batu Pahat, Johor. The results are shown in I-V curve and P-V curve and compared with the theory of I-V and P-V curve. Other than that, the PV module have different performance in different value of irradiance and temperature. Lastly, the PV Module is work efficiently and full performance at Standard Test Conditon (STC).
Feasibility Study of Grid-Connected Solar Photovoltaic (PV) System for Primary School in Johor Siti Amely Jumaat; Adhwa Amsyar Syazwan Ab Majid; Chin Kim Gan; Mohd Noor Abdullah; Nur Hanis Radzi; Rohaiza Hamdan; Suriana Salimin
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 1: July 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i1.pp233-240

Abstract

This project aims to determine the potential of grid connected solar Photovoltaic (PV) implementation and project planning of solar PV System in school.  Generally, the educational institution used huge amount of electricity to operate so their monthly bills is expensive. Therefore, the project planning is necessary to determine the potential of solar PV system implementation. The project planning consists of the current electricity consumed by the school and the amount of 120W Monocrystalline PV module needed by them. The cost of project are determines to identify the initial cost of this project implementation. Lastly, analysis on the profit collected by SK Pintas Raya after 20 years of solar PV system implementation proved the importance of this project.
Intelligent Lighting Control System for Energy Savings in Office Building Khairul Rijal Wagiman; Mohd Noor Abdullah
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 1: July 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i1.pp195-202

Abstract

Lighting system is a crucial sub-system and consumes substantial electricity energy in the buildings. This paper proposes an intelligent lighting control system using artificial neural network (ANN). The minimization of dimming levels of luminaires has been considered as an objective function of the controller. Moreover, the light sensor field of view is also taken into consideration in objective function formulation. The proposed ANN controller has been tested on an actual office room of the Department of Mechanical Technology, Institute of Industrial Training, Selandar, Melaka, Malaysia. The simulation has been carried out using DIALux simulation lighting software. Based on the results, the proposed controller showed great performance in terms of adaptive less light sensor data and achieving dimming levels target that complies the European Standard EN12464-1. Furthermore, it can save energy up to 34%.Lighting system is a crucial sub-system and consumes substantial electricity energy in the buildings. This paper proposes an intelligent lighting control system using artificial neural network (ANN). The minimization of dimming levels of luminaires has been considered as an objective function of the controller. Moreover, the light sensor field of view is also taken into consideration in objective function formulation. The proposed ANN controller has been tested on an actual office room of the Department of Mechanical Technology, Institute of Industrial Training, Selandar, Melaka, Malaysia. The simulation has been carried out using DIALux simulation lighting software. Based on the results, the proposed controller showed great performance in terms of adaptive less light sensor data and achieving dimming levels target that complies the European Standard EN12464-1. Furthermore, it can save energy up to 34%.
Illuminance levels based on different sky conditions by considering daylight harvesting Nik Sahidah Nik Ahmad; N. H. Radzi; Mohd Noor Abdullah
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1219-1225

Abstract

Daylight harvesting systems (DHS) offer the most effective and significant to reduce energy consumption. In the lighting system, there are various problems which include waste of energy consumption, inappropriate lighting and increasing greenhouse effect. Therefore, the waste of energy consumption should be reduced by controlling the dimming levels of artificial lighting according to the standard thus reducing the greenhouse effect. Hence, this paper considered the daylight adaptive for the lighting system to determine the dimming level and illuminance level for the office room. The simulation has been carried out using DIALux simulation lighting software to simulate the average daylight and average illuminance level with different conditions sky, which is clear, average, and overcast sky. Based on the result, the illuminance level has complied with the European Standard EN12464-1. Furthermore, the presence of daylight and weather conditions plays an essential role in the lighting system. The illuminance and dimming levels are different depending on the time and type of sky condition at that time. Therefore, the daylight adaptive in the lighting system can reduce the use of artificial light in the room.
Design of a contactless body temperature measurement system using Arduino Asif A. Rahimoon; Mohd Noor Abdullah; Ishkrizat Taib
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1251-1258

Abstract

The recent advances in electronics and microelectronics devices allow the development of newly low-cost monitoring tools used by peoples for health preventive purposes. Sensors used in medical equipments convert various forms of human body vital signs into electrical signals. Therefore, the healthcare monitoring systems considering non-invasive and wearable sensors with integrated communication mediums allow an efficient solution to live a comfortable home life.  This paper presents the remote monitoring of human body temperature (HBT) wirelessly by means of Arduino controller with different sensors and open source internet connection. The proposed monitoring system uses an internet network via wireless fieldity (wifi) connection to be linked with online portal on smart phone or computer. The proposed system is comprised of an Arduino controller, LM-35 (S1), MLX-90614 (S2) temperature sensors and ESP-wifi shield module. The obtained result has shown that real time temperature monitoring data can be transferred to authentic observer by utilizing internet of things (IoT) applications. The findings from this research indicates that the difference of average temperature in between Sensor S1 and S2 is about 15 0C