Md Hairul Nizam Talib
Universiti Teknikal Malaysia Melaka

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Experimental Analysis of Simplified Rules Fuzzy Logic Speed Controller for Wide Speed Range Operations Md Hairul Nizam Talib; Z. Ibrahim; Z. Rasin; J.Mat Lazi; M. Azri; N.S.Y. Farah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (955.534 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1090-1097

Abstract

This paper presents the experimental analysis of simplified rules Fuzzy Logic Speed Controller (FLSC) of Induction Motor drive. The maximum gain of input scaling factor, FLSC is generally limited by the coverage of universe of discoursed (UoD). Thus, to further increase the input gain scaling factor, the outer membership function need to be increased.  This analysis covers various values in the range of UoD values from [-1,1] to [-5,5] for the wide speed range operations from low to rated speed ranges. The FLSC is employed to the indirect Field Oriented Control method fed by a voltage source inverter. Simulation and experimental verification is done by using Matlab/Simulink and dSPACE 1103 controller experimental rigs respectively. Based on the results, speed performance behaviours are improved over the wide speed range operations in term of rise time and setting time. The tuning approached is simple without additional algorithm for faster and more accurate response.
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Windup and Pre Filter Schemes Md Hairul Nizam Talib; Zulkifilie Ibrahim; Nasrudin Abd. Rahim; Ahmad Shukri Abu Hasim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 2: 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper presents the speed performance analysis of indirect Field Oriented Control (FOC) induction motor drive by applying Proportional Integral (PI) controller, PI with Anti-Windup (PIAW) and Pre- Filter (PF). The objective of this experiment is to have quantitative comparison between the controller strategies towards the performance of the motor in term of speed tracking and load rejection capability in low, medium and rated speed operation. In the first part, PI controller is applied to the FOC induction motor drive which the gain is obtained based on determined Induction Motor (IM) motor parameters.  Secondly an AWPI strategy is added to the outer loop and finally, PF is added to the system. The Space Vector Pulse Width Modulation (SVPWM) technique is used to control the voltage source inverter and complete vector control scheme of the IM drive is tested by using a DSpace 1103 controller board. The analysis of the results shows that, the PI and AWPI controller schemes produce similar performance at low speed operation. However, for the medium and rated speed operation the AWPI scheme shown significant improvement in reducing the overshoot problem and improving the setting time. The PF scheme on the other hand, produces a slower speed and torque response for all tested speed operation. All schemes show similar performance for load disturbance rejection capability.DOI: http://dx.doi.org/10.11591/ijpeds.v4i4.6250
Fuzzy membership functions tuning for speed controller of induction motor drive: performance improvement Nabil Farah; Md Hairul Nizam Talib; Zulkifilie Bin Ibrahim; Qazwan Abdullah; Ömer Aydoğdu; Jurifa Mat Lazi; Zm Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1258-1270

Abstract

Fuzzy logic controller (FLC) has gained high interest in the field of speed control of machine drives in both academic and industrial communities. This is due to the features of FLC of handling non-linearity and variations. FLC system consists of three main elements: scaling factors (SFs), membership functions (MFs), and rule-base. Fuzzy MFs can be designed with different types and sizes. For induction motor (IM) speed control, (3x3), (5x5) and (7x7) MFs are the most used MFs sizes, and normally designed based on symmetrical distribution. However, changing the width and peak position of MFs design enhance the performance. In this paper, tuning of MFs of FLC speed control of IM drives is considered. Considering (3x3), (5x5) and (7x7) MFs sizes, the widths and peak positions of these MFs are asymmetrically distributed to improve the performance of IM drive. Based on these MFs sizes, the widths and peak positions are moved toward the origin (zero), negative and positive side that produces a controller less sensitive to the small error variations. Based on simulation and performance evaluations, improvement of 5% in settling time (Ts), 0.5% in rise time and 20% of steady-state improvement achieved with the tuned MFs compared to original MFs.
Design and Development of Grid-connected Quasi-Z-Source PV Inverter Zulhani Rasin; Muhammed Fazlur Rahman; Maaspaliza Azri; Md Hairul Nizam Talib; Auzani Jidin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1464.401 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1989-2005

Abstract

An inverter system applied with the PV source typically has a problem of lower input voltage due to constraint in the PV strings connection. As a countermeasure a DC-DC boost converter is placed in between to achieve a higher voltage at the inverter DC link for connection to the grid and to realize the MPPT operation. This additional stage contributes to losses and complexity in control thus reducing the overall system efficiency. This work discussed on the design and development of a grid-connected quasi-Z-source PV inverter which has different topology and control method compared to the conventional voltage source inverter and able to overcome the above disadvantages. Modelling and performance analysis of the voltage and current controller to achieve a good power transfer from the PV source, as well sycnchronization with the grid are presented in detail. Results from both simulation and experimental verification demonstrate the designed and developed grid-connected qZSI PV inverter works successfully equivalent to the conventional voltage source inverter system.
Photovoltaic Emulator for Grid-connected Quasi-Z-Sorce Inverter Zulhani Rasin; Muhammed Fazlur Rahman; Maaspaliza Azri; Md Hairul Nizam Talib; Auzani Jidin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1283.817 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1976-1988

Abstract

The performance of PV panel is very much dependent on the amount of sun light as well as the temperature of the surrounding environment which normally hard to be predicted. The use of PV emulator in the investigation of solar inverter especially at a lab scale platform helps to mitigate the inconsistency factors due to this uncontrollable variation. This work discussed on the design and development of a PV emulator for the grid-connected quasi-Z-source inverter which has different topology and control method compared to the conventional voltage source inverter. The I-V characteristics of the PV panel is modelled from the commercially available product and through circuit analysis the relation between capacitor voltage control and the PV terminal voltage is established, thus realizing the MPPT operation. Results from both simulation and experimental verification demonstrated that the PV emulator successfully able to produce power for the inverter according to the requirement.
Sliding mode control with observer for permanent magnet synchronous machine drives Muhammad Haziq Nashren Razali; Jurifa Mat Lazi; Zulkifilie Ibrahim; Md Hairul Nizam Talib; Fizatul Aini Patakor
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 1: January 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i1.pp89-97

Abstract

This paper aims to develop the sliding mode control (SMC) scheme in sensorless permanent magnet synchronous machine (PMSM) drives to replace conventional proportional integral (PI) speed control. The SMC is formulated based on the integral sliding surface of the speed error. And the error is corrected based on the concept of Lyapunov stability. The SMC is designed with the load torque observer so that the disturbance can be estimated as feedback to the controller. The vector control technique which is also known as field-oriented control (FOC) is also used to split the stator current into the magnetic field generating part which is the direct axis and the torque generating part which is the quadrature axis. This can be done by using Park and Clarke transformations. The performance of the proposed SMC is tested under changes in load-torque and without load for different speed commands. The results prove that the SMC produces robust performances under variations of speeds and load disturbances. The effectiveness of the proposed method is verified and simulated by using MATLAB/SIMULINK software.
Non-independent speed control for dual-PMSM drives fed by a single three-leg VSI Jurifa Mat Lazi; Zulkifilie Ibrahim; Md Hairul Nizam Talib
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 3: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i3.pp1717-1724

Abstract

The objective of this article is to analyze the performances of non-independent speed control of dual-pmsm (permanent magnet synchronize motor) drives by a single three-leg voltage source inverter (VSI) using control of mean and differential torque technique. In general, there are two types of control strategies for dual-motor drives. One is master-slave technique and another one is mean control technique. For mean control technique, this study chooses mean and differential approach for the motors parameters and using average value for the voltage space vector. The advantages of dual-motor drives fed by a single inverter topology are, it can decrease the size and cost compared to the dual-motor drives which used by individual inverter, either in industrial or in traction applications. However, by using a single three-phase inverter, the topology only restricted for the same operating conditions which are at the same speed, same parameters and same direction. The dual-motors are dependent (non-independent) on the other motor. It is can only be tested on different load operation. The analysis is focuses on speed and load variation for dual-PMSM drives considering the forward and reverse operations of the motor. This simulation model is modelled using MATLAB-Simulink.