Claim Missing Document
Check
Articles

Found 6 Documents
Search

A Single-Phase Dual-Stage PV-Grid System with Active Filtering Slamet Riyadi; Yanuarsyah Haroen
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 3: September 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (332.908 KB) | DOI: 10.11591/ijpeds.v6.i3.pp449-458

Abstract

Integrating photovoltaic based electricity into the grid and power quality improvement have become two major issues in electrical system. Formerly, these can be solved by using two converter systems separately, a PV-Grid System and an active power filter. But recent technology uses only a converter system to do both function. An existed shunt active power filter (SAPF) can be modified to form a dual-stage PV-Grid with active filtering capability. In this paper, a PV-Grid System that is capable to transfer all power generated by PV modules and reduce harmonic contents is proposed. The system was formed by connecting a boost chopper as a Maximum Power Point Tracker and PV modules to the DC-link capacitor of a single-phase SAPF. It just needed a current transducer and also required simpler control circuits. A voltage controller was needed to achieve power equilibrium while a current controller was needed to make the grid current sinusoidal with unity power factor. To verify the analysis, simulations and experiments were done.
Design and implementation of a single-phase five-level inverter using a DC Source with voltage balancer on capacitor Leonardus Heru Pratomo; Slamet Riyadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp902-912

Abstract

The global use of renewable energy resources has led to the design and development of high performance, efficient, controllable, and cheap multilevel inverters, which act as a solution to the numerous power deficiencies. However, in terms of control, these multilevel inverters are often associated with DC sources and complexity. Therefore, this research designed a single-phase five-level inverter using a DC source, with a novel sinusoidal pulse-width-modulated (SPWM) control scheme. The system consists of a Flying Capacitor DC-DC Converter and H-Bridge Inverter (FCDCDC-HBI). A single absolute reference signal and the phase-shifted triangular carrier were used to generate SPWM to enhance the capacitor voltage balance. The designed inverter is capable of producing five levels of output voltage levels, namely Vi, Vi/2, 0, −Vi/2, and −Vi from a DC supply, thereby reducing the overall cost and complexity of the SPWM system. This research also produced a detailed operation principle of the proposed system, which was verified through simulation and implemented using a prototype. Finally, hardware implementation results are presented to check the performance of the inverter.
Design and Implementation of Double Loop Control Strategy in TPFW Voltage and Current Regulated Inverter for Photovoltaic Application Leonardus Heru Pratomo; Agutinus Fidelis Wibisono; Slamet Riyadi
Journal of Robotics and Control (JRC) Vol 3, No 2 (2022): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i2.14365

Abstract

Increasing demands for renewable energy encourage the development of inverters as a solution for converting energy from direct photovoltaic current (DC) output to alternative current (AC) at a maximum output power. Several nation standard systems are three-phase four-wired (TPFW), which means that the TPFW inverter must be used. The issue arises because the TPFW inverter is operated through an open-loop system, which has the problem of preventing the inverter from adjusting the voltage and current as needed. Hence, the open-loop system must be converted to a closed-loop system which is usually used only single control. The single strategy control is not effective because this strategy cannot regulate voltage and current at the same time. It only controls either voltage or current. The output voltage or current is changed when the load value is changed. Due to its weaknesses, the study proposes a new double-control strategy method that utilizes a PI strategy (P) controller as a voltage controller and a proportional strategy control as a current controller. This strategy is tested and measured by using simulation, showing a THD value of 1.07%. Accordance to IEEE standards, the THD value is within the recommended limit. Therefore, the output voltage and current produced have a good signal with a low ripple and stability without fluctuation. 
dsPIC33 Based Control for PV-Grid System with a Buck-Boost MPPT Slamet Riyadi
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 7: July 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i7.pp5137-5143

Abstract

The use of solar energy is very important due to the fossil based energy crisis. Rapid progress in PV technologies has contributed to its applications. There are many PV based power plants built around the world.  Maximum Power Point Trackers (MPPT) take significant role in operating PV modules to produce their maximum power. They are implemented by using choppers to match the load resistance and the PV resistance. Recently, integration between PV modules and grids is more popular due to their advantages. The PV-Grid system can be single stages, two stages or any other types and all of them use PWM (pulse width modulation)  converters as their cores. In this paper, a PV-Grid System using buck-boost chopper as MPPT is analyzed. Power generated by PV modules is transferred to the grid by using an inverter that operated as a controlled current source so the complexity can be reduced. Finally, the dsPIC33 based control scheme for such a PV-Grid System was made as a laboratory scaled-prototype to verify the analysis and simulations.
Single-Phase Single-Stage PV-Grid System Using VSI Based on Simple Control Circuit Slamet Riyadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 1: March 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (153.686 KB)

Abstract

Integrating electric energy generated by PV with utilities has been developed. Some of these using two-stage converters and the others using single stage converters. For systems with two-stage converters, the first stage converter acts as a MPPT to maximize power generated by PV and the second stage is used as an interface to the utilities. In the single-stage system, an inverter is used for both function. In this paper, PV-Grid System using a single-stage Voltage Source Inverter is proposed. The simple control circuit to make PV generate maximum power and keeping power equilibrium between PV and inverter output power is used. To verify the analysis, simulations are done.DOI: http://dx.doi.org/10.11591/ijpeds.v3i1.1860
Design and Implementation of Smart Forklift for Automatic Guided Vehicle Using Raspberry Pi 4 Florentinus Budi Setiawan; Phoa Marcellino Siva; Leonardus Heru Pratomo; Slamet Riyadi
Journal of Robotics and Control (JRC) Vol 2, No 6 (2021): November
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.26130

Abstract

Automatic Guided Vehicle (AGV) pallet truck is widely used in the industry. This kind of AGV is such a combination of the ordinary AGV used forklift mechanism. The forklift mechanism is employed for lifted up or carrying things from one place to another place. As the technology has been developed along with the industry revolution 4.0, therefore, the activity could be done automatically by using a robot-like AGV pallet truck. Basically, the working principle of the AGV pallet truck is similar to the ordinary forklift whereas the AGV pallet truck is automatically operated. DC motor is applied as the driving force for the uplifting and down lifting process in the forklift mechanism of the AGV pallet truck. DC motor is chosen because it has large torque which is advantageous for lifting loads. Unfortunately, DC motor also owns some disadvantages such as high maintenance fees and less precision. This study proposes a smart forklift mechanism for AGV pallet trucks that utilizes a stepper motor and ultrasonic distance sensor. This smart forklift mechanism is equipped with raspberry pi model B as the main microcontroller and combined with an ultrasonic distance sensor. The result of the ultrasonic distance sensor has an error approaching zero percent so the precision of the height can be fully controlled. Step / Revolution (SPR) method makes the stepper motor can move smoothly like micro-step and also the number of rotations can be controlled as we want.