Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Power Electronics and Drive Systems (IJPEDS)

A Survey of Multilevel Voltage Source Inverter Topologies, Controls, and Applications Ibrahim Haruna Shanono; Nor Rul Hasma Abdullah; Aisha Muhammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1011.22 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1186-1201

Abstract

Multi-level converters are every day attracting research interest due to it tremendous positive contributions they are making in the power industries. The converter has put hope in the minds of power electronic engineers that a time will come when it will break a record by providing an efficient means of utilizing the abundant renewable energy resources. The paper presents a review of multilevel voltage source converters that are widely being used in engineering applications. It reports the technological advancements in converter topologies of Flying Capacitor (FC), Neutral Point (NPC) /Diode Clamped, and Cascaded H-Bridge (CHB) with their respective advantages and disadvantages. Recent customized/hybrid topologies of the three-phase multilevel inverter with reduced component count and switching combination are reported. The paper also reviewed different modulation techniques such as the multilevel converter carrier base PWM, Space Vector Modulation techniques (SVM), and Selective Harmonic Elimination method (SHE-PWM). Finally, various multilevel converters areas of application were highlighted. This review will expose the reader to the latest developments made in the multi-level topologies, modulation techniques, and applications.
9-Level Single DC Voltage Source Inverter Controlled Using Selective Harmonic Elimination Ibrahim Haruna Shanono; Nor Rul Hasma Abdullah; Aisha Muhammad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1237.344 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1251-1262

Abstract

This paper presents an efficient cascaded H-bridge inverter topology that is controlled using an optimized selective harmonic elimination pulse width modulation technique. The switching angles are obtained by solving the nonlinear transcendental equation with the aid of genetic algorithm optimization method. Unlike the usual H-bridge converter topologies that require multiple individual direct current (DC) sources and additional switching components per voltage step, the proposed topology utilizes a single DC source to supply two full-bridge modules. The modified topology employs a cascaded multi-winding transformer that has two independent primary windings and series-connected secondary side with 1:E  and 1:3E  turn ratios. The converter topology and switching function are proven to be reliable and efficient, as the total harmonic distortion (THD) is quite low when compared with the conventional H-bridge topology controlled by other modulation techniques. This feature makes it attractive to renewable energy systems, distributed generation, and highly sensitive equipment such as those used in medical, aerospace, and military applications. The topology is simulated using a PSIM package. Simulation results show that all the 11-level lower order odd harmonics are eliminated or suppressed in compliance with the SHE elimination theorem of (N-1).