Claim Missing Document
Check
Articles

Found 3 Documents
Search

D-STATCON model for voltage sag mitigation Hendri Masdi; Rini Nur Hasanah; Hadi Suyono; Ismail Bin Musirin; Taufik Taufik
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1122.861 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2214-2221

Abstract

Development of a FACTS device model for mitigating voltage sag is presented. It deals with a static synchronous condenser (STATCON) to be used in the AC distribution networks. Simulation with the help of a commercial software Matlab/Simulink was explored to investigate its characteristics and performance during the voltage sag occurrence. The considered main cause of voltage sag was the starting of high capacity asynchronous motor. A voltage source inverter based on the phase-controlled thyristor components was implemented in this application to compensate the change in reactive power of the system. The concerns have been put on the influence of initial operation point and DC capacitance. The study results show the capability of D-STATCON model to reduce the consequence of voltage sag following the starting of high-power asynchronous motor in the distribution network. A fast response of the condenser work confirmed the desired performance.
Multi-verse optimization based evolutionary programming technique for power scheduling in loss minimization scheme Muhamad Hazim Lokman; Ismail Musirin; Saiful Izwan Suliman; Hadi Suyono; Rini Nur Hasanah; Sharifah Azma Syed Mustafa; Mohamed Zellagui
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (562.209 KB) | DOI: 10.11591/ijai.v8.i3.pp292-298

Abstract

The growth of computational intelligence technology has witnessed its application in numerous fields. Power system study is not left behind as far as computational intelligence trend is concerned. In power system community, optimization process is one of the crucial efforts for most remedial action to maintain the power system security. Basically, power scheduling refers to prior to fact action (such as scheduling generators to generate certain powers for next week). Power scheduling process is one of the most important routines in power systems. Scheduling of generators in a power transmission system is an important scheme; especially its offline studies to identify the security status of the system. This determines the cost effectiveness in power system planning. This paper investigates the performance of multi-verse based evolutionary programming (lowest EP) technique in the application of power system scheduling to ensure loss is gained by the system. Losses in the system can be controlled through this implementation which can be realized through the validation on a chosen reliability test system as the main model. Validation on IEEE 30-Bus Reliability Test System resulted that both techniques are reliable and robust in addressing this issue.
Enhancement of the power system distribution reliability using ant colony optimization and simulated annealing methods Hadi Suyono; Rini Nur Hasanah; Panca Mudjirahardjo; M Fauzan Edy Purnomo; Septi Uliyani; Ismail Musirin; Lilik J. Awalin
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp877-885

Abstract

The increasing demand of electricity and number of distributed generations connected to power system greatly influence the level of power service reliability. This paper aims at improving the reliability in an electric power distribution system by optimizing the number and location of sectionalizers using the Ant Colony Optimization (ACO) and Simulated Annealing (SA) methods. Comparison of these two methods has been based on the reliability indices commonly used in distribution system: SAIFI, SAIDI, and CAIDI. A case study has been taken and simulated at a feeder of Pujon, a place in East Java province of Indonesia, to which some distributed generators were connected. Using the existing reliability indices condition as base reference, the addition of two distributed plants, which were micro hydro and wind turbine plants, has proven to lower the indices as much as 0.78% for SAIFI, 0.79% for SAIDI, and 2.32% for CAIDI. The optimal relocation of the existing 16 sectionalizers in the network proved to decrease further the reliability indices as much as 43.96% for SAIFI, 45.52% for SAIDI, and 2.8% for CAIDI, which means bringing to much better reliability condition. The implementation of the SA method on the considered data in general resulted in better reliability indices than using the ACO method.