Claim Missing Document
Check
Articles

Found 3 Documents
Search

Robust coordinated control using backstepping of flywheel energy storage system and DFIG for power smoothing in wind power plants Mohamed Nadour; Ahmed Essadki; Tamou Nasser; Mohammed Fdaili
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (882.495 KB) | DOI: 10.11591/ijpeds.v10.i2.pp1110-1122

Abstract

This paper presents a robust coordinated control of a flywheel energy storage system (FESS) and a doubly fed induction generator (DFIG) based wind energy conversion system (WECS), used to smooth the wind induced output power fluctuations. The overall system control combines field oriented control schemes and nonlinear backstepping approach applied first, to the machine side converter (MSC) to regulate the DFIG active and reactive power in order to ensure maximum power point tracking (MPPT) operation and a unity power factor at the point of common coupling (PCC). Then, to the grid side converter (GSC) to maintain a constant DC bus voltage. Finally, to the flywheel side converter (FSC) in way that allows the storage unit to serve as a buffer that stores energy in the case of excess power and retrieves it back into the output in the case of power deficiency. A numerical simulation using Matlab/Simulink software validates the effectiveness of the proposed control strategies in terms of dynamic response, improvement of generated power quality and robustness against parametric variation.
Primary frequency control applied to the wind turbine based on the DFIG controlled by the ADRC Issam Minka; Ahmed Essadki; Sara Mensou; Tamou Nasser
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (735.352 KB) | DOI: 10.11591/ijpeds.v10.i2.pp1049-1058

Abstract

In this paper, we study the primary frequency control that allows the variable speed Aeolian to participate in the frequency regulation when a failure affects the network frequency. This method based on the control of the generator rotational speed or the control of pitch angle makes it possible to force the wind turbine to produce less power than its maximum available power, consequently we will create an active power reserve. This wind turbine must inject into the grid a part of its power reserve when the frequency drops, in contrary the wind turbine reserves more of energy. So, this work presents the performances of this control strategy for the different wind speed value. The results are obtained by a simulation in the MATLAB/SIMULINK environment.
Performance of a vector control for DFIG driven by wind turbine: real time simulation using DS1104 controller board Sara Mensou; Ahmed Essadki; Issam Minka; Tamou Nasser; Badr Bououlid Idrissi; Lahssan Ben Tarla
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v10.i2.pp1003-1013

Abstract

In this research paper we investigate the modelling and control of a doubly fed induction generator (DFIG) driven in rotation by wind turbine, the control objectives is to optimize capture wind, extract the maximum of the power generated to the grid using MPPT algorithm (Maximum Power Point Tracking) and have a specified reactive power generated whatever wind speed variable, the indirect field oriented control IFOC with the PI correctors was used to achieve such as decoupled control. To validate the dynamique performance of our controller the whole system was simulated using dSPACE DS1104 Controller board Real Time Interface (RTI) which runs in Simulink/MATLAB software and ControlDesk 4.2 graphical interfaces.