Claim Missing Document
Check
Articles

Found 3 Documents
Search

A performance comparison of transformer-less grid tied PV system using diode clamped and neutral point shorted inverters Suroso Suroso; Hari Siswantoro
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (706.717 KB) | DOI: 10.11591/ijpeds.v11.i2.pp702-710

Abstract

Grid tied photovoltaic (PV) system is an operation mode of PV system working together with utility power supply to provide power to the power load. Conventionally, transformer is used together with the power inverter. The power transformer works as galvanic insolation amongst PV system and power grid. It works also to raise the voltage of power inverter. However, use of transformer will add system complexity, price, weight and size of the entire system. Transformer-less system is an alternative to make the system simpler and more practical in use. The paper discusses performance of transformer-less grid tied PV systems using diode clamped and neutral point shorted inverters. Effects of transformer elimination to the feat of the grid tied PV system especially harmonics content and leakage current of PV system were examined and analyzed. The performance was also compared with the traditional system using H-bridge inverter. The leakage currents did not flow in the system applying diode clamped inverter, and neutral point shorted inverter. In case of harmonics content, the diode clamped inverter injected less harmonics components than the neutral point shorted inverter. The neutral point shorted provides a simpler inverter circuit in the transformerless systems.
Study of novel parallel H-bridge and common-emitter current-source inverters for photovoltaic power conversion system Suroso Suroso; Hari Siswantoro
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i1.pp500-508

Abstract

A novel operation of three-level H-bridge and common-emitter current source inverters (CSIs) proposed for photovoltaic power converters is presented in this paper. Two photovoltaic systems with two different inverter circuits, i.e. H-bridge and common-emitter CSIs, were connected in parallel to supply a sharing ac power load. In order to regulate the power supplied by each inverter system, proportional integral current controllers were employed. Triangular carrier and sinusoidal signals-based modulation techniques were implemented to both inverters. Some parameters such as load current, inverter’s output current, total harmonics distortion (THD), and efficiency were tested and analyzed. Test results showed that in the parallel operation of these inverters, the average THD percentage of the load current was 0.34% for load power factor 0.996 and 0.62 % for load power factor 0.782. Minimum waveform distortion of inverter ac currents during parallel operation can be achieved if the current magnitudes of both inverters were set the same. In the case of efficiency, the maximum efficiency of the system was 89.07%. Operating the H-bridge CSI with a higher magnitude of the output current will result in higher efficiency of the system.
Three-level modified sine wave inverter equipped with online temperature monitoring system Suroso Suroso; Ahmad Khafidz; Winasis Winasis; Hari Siswantoro
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14848

Abstract

Research and development on power converters are getting more interesting in recent years. It is also buttressed by rapid development in related fields, such as power semiconductor, digital advanced control, magnetic material and use of power converters in many sectors.  In addition to the power quality matter, simplicity of inverter circuits is another notable aspect that should be considered toward economical feature. Adding the quantity of power switches will increase complexity of overall inverter circuits. This paper discusses a circuit configuration of three-level modified sine wave neutral point shorted power inverter which work converting dc power into ac power with less number of power switches. To improve the performance and feature of inverter circuits, the inverter was equipped with online temperature monitoring, and overheat protection based on internet of things. Adding online temperature monitoring system makes easier in monitoring of circuits to prevent the excessive faults of inverter. Some computer based test data are shown and discussed. Furthermore, experiment results of the inverter prototype, and its online monitoring system are presented. Test outputs demonstrated that the proposed system worked properly generating a three-level modified sine wave voltage, with online temperature monitoring system.