Claim Missing Document
Check
Articles

Found 14 Documents
Search

A Finite State Machine Fall Detection Using Quadrilateral Shape Features Mohd Fadzil Abu Hassan; Mohamad Hanif Md Saad; Mohd Faisal Ibrahim; Aini Hussain
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.373 KB) | DOI: 10.11591/eei.v7i3.1184

Abstract

A video-based fall detection system was presented; which consists of data acquisition, image processing, feature extraction, feature selection, classification and finite state machine. A two-dimensional human posture image was represented by 12 features extracted from the generalisation of a silhouette shape to a quadrilateral. The corresponding feature vectors for three groups of human pose were statistically analysed by using a non-parametric Kruskal Wallis test to assess the different significance level between them. From the statistical test, non-significant features were discarded. Four selected kernel-based Support Vector Machine: linear, quadratics, cubic and Radial Basis Function classifiers were trained to classify three human posture groups. Among four classifiers, the last one performed the best in terms of performance matric on testing set. The classifier outperformed others with high achievement ofaverage sensitivity, precision and F-score of 99.19%, 99.25% and 99.22%, respectively. Such pose classification model output was further used in a simple finite state machine to trigger the falling event alarms. The fall detection system was tested on different fall video sets and able to detect the presence offalling events in a frame sequence of videos with accuracy of 97.32% and low computional time.
A Finite State Machine Fall Detection Using Quadrilateral Shape Features Mohd Fadzil Abu Hassan; Mohamad Hanif Md Saad; Mohd Faisal Ibrahim; Aini Hussain
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (560.373 KB) | DOI: 10.11591/eei.v7i3.1184

Abstract

A video-based fall detection system was presented; which consists of data acquisition, image processing, feature extraction, feature selection, classification and finite state machine. A two-dimensional human posture image was represented by 12 features extracted from the generalisation of a silhouette shape to a quadrilateral. The corresponding feature vectors for three groups of human pose were statistically analysed by using a non-parametric Kruskal Wallis test to assess the different significance level between them. From the statistical test, non-significant features were discarded. Four selected kernel-based Support Vector Machine: linear, quadratics, cubic and Radial Basis Function classifiers were trained to classify three human posture groups. Among four classifiers, the last one performed the best in terms of performance matric on testing set. The classifier outperformed others with high achievement ofaverage sensitivity, precision and F-score of 99.19%, 99.25% and 99.22%, respectively. Such pose classification model output was further used in a simple finite state machine to trigger the falling event alarms. The fall detection system was tested on different fall video sets and able to detect the presence offalling events in a frame sequence of videos with accuracy of 97.32% and low computional time.
GA-based Optimisation of a LiDAR Feedback Autonomous Mobile Robot Navigation System Siti Nurhafizah Anual; Mohd Faisal Ibrahim; Nurhana Ibrahim; Aini Hussain; Mohd Marzuki Mustafa; Aqilah Baseri Huddin; Fazida Hanim Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.649 KB) | DOI: 10.11591/eei.v7i3.1275

Abstract

Autonomous mobile robots require an efficient navigation system in order to navigate from one location to another location fast and safe without hitting static or dynamic obstacles. A light-detection-and-ranging (LiDAR) based autonomous robot navigation is a multi-component navigation system consists of various parameters to be configured. With such structure and sometimes involving conflicting parameters, the process of determining the best configuration for the system is a non-trivial task. This work presents an optimisation method using Genetic algorithm (GA) to configure such navigation system with tuned parameters automatically. The proposed method can optimise parameters of a few components in a navigation system concurrently. The representation of chromosome and fitness function of GA for this specific robotic problem are discussed. The experimental results from simulation and real hardware show that the optimised navigation system outperforms a manually-tuned navigation system of an indoor mobile robot in terms of navigation time.
Tooth segmentation using dynamic programming-gradient inverse coefficient of variation Anuar Mikdad Muad; Nur Sakinah Mohamed Bahaman; Aini Hussain; Mohd Yusmiaidil Putera Mohd Yusof
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.948 KB) | DOI: 10.11591/eei.v8i1.1446

Abstract

Teeth provide meaningful clues of an individual. The growth of the teeth is correlated with the individual age. This correlation is widely used to estimate age of an individual in applications like conducting forensic odontology, immigration, and differentiating juveniles and adolescents. Current forensic dentistry largely depends on laborious investigation process that is performed manually and can be influenced by human factors like fatigue and inconsistency. Digital panoramic radiograph dental images allow noninvasive and automatic investigation to be performed. This paper presents analyses on third molar tooth segmentation for the population in Malaysia, ranging from persons age of 5 years old to 23 years old. Two segmentation techniques: gradient inverse coefficient of variation with dynamic programming (DP-GICOV) and Chan-Vese (CV) were employed and compared. Results demonstrated that the accuracy of DP-GICOV and CV were 95.3%, and 81.6%, respectively.
Neural Network Based Prediction of Stable Equivalent Series Resistance in Voltage Regulator Characterization Mohd Hairi Mohd Zaman; M. M. Mustafa; M. A. Hannan; Aini Hussain
Bulletin of Electrical Engineering and Informatics Vol 7, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (480.374 KB) | DOI: 10.11591/eei.v7i1.857

Abstract

High demand on voltage regulator (VR) currently requires VR manufacturers to improve their time-to-market, particularly for new product development. To fulfill the output stability requirement, VR manufacturers characterize the VR in terms of the equivalent series resistance (ESR) of the output capacitor because the ESR variation affects the VR output stability. The VR characterization outcome suggests a stable range of ESR, which is indicated in the ESR tunnel graph in the VR datasheet. However, current practice in industry manually characterizes VR, thereby increasing the manufacturing time and cost. Therefore, an efficient method based on multilayer neural network has been developed to obtain the ESR tunnel graph. The results show that this method able to reduce the VR characterization time by approximately 53% and achieved critical ESR prediction error less than 5%. This work demonstrated an efficient and effective approach for VR characterization in terms of ESR.
Tooth segmentation using dynamic programming-gradient inverse coefficient of variation Anuar Mikdad Muad; Nur Sakinah Mohamed Bahaman; Aini Hussain; Mohd Yusmiaidil Putera Mohd Yusof
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.948 KB) | DOI: 10.11591/eei.v8i1.1446

Abstract

Teeth provide meaningful clues of an individual. The growth of the teeth is correlated with the individual age. This correlation is widely used to estimate age of an individual in applications like conducting forensic odontology, immigration, and differentiating juveniles and adolescents. Current forensic dentistry largely depends on laborious investigation process that is performed manually and can be influenced by human factors like fatigue and inconsistency. Digital panoramic radiograph dental images allow noninvasive and automatic investigation to be performed. This paper presents analyses on third molar tooth segmentation for the population in Malaysia, ranging from persons age of 5 years old to 23 years old. Two segmentation techniques: gradient inverse coefficient of variation with dynamic programming (DP-GICOV) and Chan-Vese (CV) were employed and compared. Results demonstrated that the accuracy of DP-GICOV and CV were 95.3%, and 81.6%, respectively.
GA-based Optimisation of a LiDAR Feedback Autonomous Mobile Robot Navigation System Siti Nurhafizah Anual; Mohd Faisal Ibrahim; Nurhana Ibrahim; Aini Hussain; Mohd Marzuki Mustafa; Aqilah Baseri Huddin; Fazida Hanim Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.649 KB) | DOI: 10.11591/eei.v7i3.1275

Abstract

Autonomous mobile robots require an efficient navigation system in order to navigate from one location to another location fast and safe without hitting static or dynamic obstacles. A light-detection-and-ranging (LiDAR) based autonomous robot navigation is a multi-component navigation system consists of various parameters to be configured. With such structure and sometimes involving conflicting parameters, the process of determining the best configuration for the system is a non-trivial task. This work presents an optimisation method using Genetic algorithm (GA) to configure such navigation system with tuned parameters automatically. The proposed method can optimise parameters of a few components in a navigation system concurrently. The representation of chromosome and fitness function of GA for this specific robotic problem are discussed. The experimental results from simulation and real hardware show that the optimised navigation system outperforms a manually-tuned navigation system of an indoor mobile robot in terms of navigation time.
Strengthening programming skills among engineering students through experiential learning based robotics project Mohd Faisal Ibrahim; Aqilah Baseri Huddin; Fazida Hanim Hashim; Mardina Abdullah; Ashrani Aizzuddin Abd Rahni; Seri Mastura Mustaza; Aini Hussain; Mohd Hairi Mohd Zaman
International Journal of Evaluation and Research in Education (IJERE) Vol 9, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijere.v9i4.20653

Abstract

This study examined the educational effects in strengthening programming skills among university’s undergraduate engineering students via integration of a robotics project and an experiential learning approach. In this study, a robotics project was conducted to close the gap of students’ difficulty in relating the theoretical concepts of programming and real-world problems. Hence, an experiential learning approach using the Kolb model was proposed to investigate the problem. In this project, students were split into groups whereby they were asked to develop codes for controlling the navigation of a wheeled mobile robot. They were responsible for managing their group’s activities, conducting laboratory tests, producing technical reports and preparing a video presentation. The statistical analysis performed on the students’ summative assessments of a programming course revealed a remarkable improvement in their problem-solving skills and ability to provide programming solutions to a real-world problem.
GA-based Optimisation of a LiDAR Feedback Autonomous Mobile Robot Navigation System Siti Nurhafizah Anual; Mohd Faisal Ibrahim; Nurhana Ibrahim; Aini Hussain; Mohd Marzuki Mustafa; Aqilah Baseri Huddin; Fazida Hanim Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.649 KB) | DOI: 10.11591/eei.v7i3.1275

Abstract

Autonomous mobile robots require an efficient navigation system in order to navigate from one location to another location fast and safe without hitting static or dynamic obstacles. A light-detection-and-ranging (LiDAR) based autonomous robot navigation is a multi-component navigation system consists of various parameters to be configured. With such structure and sometimes involving conflicting parameters, the process of determining the best configuration for the system is a non-trivial task. This work presents an optimisation method using Genetic algorithm (GA) to configure such navigation system with tuned parameters automatically. The proposed method can optimise parameters of a few components in a navigation system concurrently. The representation of chromosome and fitness function of GA for this specific robotic problem are discussed. The experimental results from simulation and real hardware show that the optimised navigation system outperforms a manually-tuned navigation system of an indoor mobile robot in terms of navigation time.
Tooth segmentation using dynamic programming-gradient inverse coefficient of variation Anuar Mikdad Muad; Nur Sakinah Mohamed Bahaman; Aini Hussain; Mohd Yusmiaidil Putera Mohd Yusof
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (430.457 KB) | DOI: 10.11591/eei.v8i1.1446

Abstract

Teeth provide meaningful clues of an individual. The growth of the teeth is correlated with the individual age. This correlation is widely used to estimate age of an individual in applications like conducting forensic odontology, immigration, and differentiating juveniles and adolescents. Current forensic dentistry largely depends on laborious investigation process that is performed manually and can be influenced by human factors like fatigue and inconsistency. Digital panoramic radiograph dental images allow noninvasive and automatic investigation to be performed. This paper presents analyses on third molar tooth segmentation for the population in Malaysia, ranging from persons age of 5 years old to 23 years old. Two segmentation techniques: gradient inverse coefficient of variation with dynamic programming (DP-GICOV) and Chan-Vese (CV) were employed and compared. Results demonstrated that the accuracy of DP-GICOV and CV were 95.3%, and 81.6%, respectively.