Claim Missing Document
Check
Articles

Found 16 Documents
Search

Hand Gesture Recognition Sebagai Pengganti Mouse Komputer Menggunakan Kamera Helda Yunita; Endang Setyati
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 3 No. 2 (2019)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v3i2.114

Abstract

Akhir-akhir ini perkembangan teknologi semakin pesat, metode interaksi dan komunikasi antara pengguna dengan komputer adalah salah satu tuntutan perkembangan teknologi. Berbagai macam pembaharuan teknologi mengusahakan untuk meminimalisir berbagai macam perangkat menjadi satu agar lebih mudah digunakan. User lebih membutuhkan peralatan komunikasi yang bersifat alami karena tidak membutuhkan kontak langsung dengan peralatan input. Misalnya dengan gerakan dari tubuh manusia didepan kamera komputer sudah bisa menginterpretasikan. Untuk mengatasi masalah tersebut maka dilakukan suatu penelitian tentang deteksi isyarat tangan. Inputan berupa isyarat dan gerakan tangan didepan kamera dapat memberikan aksi pergerakan pada mouse yang diistilahkan dengan kamera mouse. Metode yang digunakan adalah convexhull algorithm. Melalui convexhull algorithm bisa didapatkan jumlah jari tangan yang kemudian dapat dijadikan acuan dalam pengerjaan aksi mouse. Sebenarnya sudah banyak penelitian tentang camera mouse, tetapi implementasinya masih banyak yang bergantung dengan peralatan tambahan. Penelitian ini mengembangkan penelitian yang sudah ada, yaitu hand gesture recognition dengan implemen-tasi pergerakan mouse dari video secara realtime. Dengan hand gesture recognition dan menggunakan metode convexhull algorithm pengenalan tangan akan lebih mudah hanya dengan menggunakan kamera, hanya dengan hitungan detik aksi mouse pada komputer dapat berjalan dengan baik yaitu dengan tingkat akurasi sebesar 68 % dari 75 kali percobaan
Expert System untuk Mendeteksi Penyakit Gigi Menggunakan Shell e2gLite dari Expertise2go Tuesday saka gustaf; Joan Santoso; Endang Setyati
Journal of Electrical Engineering and Computer (JEECOM) Vol 2, No 2 (2020)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v2i2.1442

Abstract

Jumlah tenaga kerja kesehatan gigi di kalangan masyarakat dinilai kurang seimbang.Tujuan utama penelitian ini untuk mendeteksi penyakit pada gigi seseorang dengan menyediakan solusi berupa sistem pakar . Tahapan proses pada penelitian ini meliputi: Pembelajaran literatur mengenai Forward Chaining ,Certainly Factor dan software expertise2Go yaitu E2glite dan Pemahaman penerapan metode Certainly Factor , Menentukan batasan-batasan permasalahan dari penelitian mengenai penyakit pada gigi serta merumuskan serangkaian solusi-solusi berupa informasi untuk mengatasi permasalahan penyakit pada gigi.Nilai akurasi dihitung dari tingkat keberhasilan sistem melakukan pelacakan dan pemberian informasi yang tepat tentang diagnosa penyakit gigi dengan tingkat nilai akurasi sebesar 70%. berdasarkan perbandingan data dan hasil kesimpulan sistem.
Identifikasi Penulis Berdasarkan Pola Tulisan Tangan Menggunakan Convolutional Autoencoder dan KNN Muhammad Turmudzi; Endang Setyati
Journal of Electrical Engineering and Computer (JEECOM) Vol 3, No 1 (2021)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v3i1.1548

Abstract

Identifikasi tulisan tangan dilakukan dengan beberapa tahapan, yaitu Akuisisi Citra dengan memanfaatkan mesin scanner dengan kualitas gambar 300dpi, Segmentasi dilakukan dengan metode threshold dan seleksi kontour dari gambar, penggabungan gambar hasil segmentasi, proses citra dari hasil segmentasi ke dalam Convolutional Autoencoder yang hasilnya diteruskan ke Transfer Learning (Lazy Learning) dalam hal ini penulis menggunakan metode KNN untuk mencocokkan tulisan tangan dari penulis. Penelitian dilakukan dengan menggunakan 100 dataset dari 20 penulis yang masing-masing penulis menulis 5 kali. Dataset yang digunakan di ujicoba pertama mengguanakan penggalan kalimat pada tulisan tangan yaitu Judul dari Puisi Chairil Anwar. Ujicoba dilakukan dengan membandingkan Training menggunakan Convolutional Autoencoder dan tanpa menggunakan Convolutional Autoencoder. Hasil dari ujicoba dengan Convolutional Autoencoder memperoleh nilai akurasi sebesar 89% dan tanpa menggunakan Convolutional Autoencoder, didapatkan nilai akurasi sebesar 88%. Pada ujicoba menggunakan tulisan tangan full, diperoleh hasil akurasi rata-rata 50% jauh di bawah hipotesa sehingga tidak cocok untuk diterapkan pada identifikasi tulisan tangan. Perlu ada nya pembatasan tulisan tangan yang akan digunakan sebagai dataset dalam identifikasi tulisan tangan
Klasifikasi Ketertarikan Belajar Anak PAUD Melalui Video Ekspresi Wajah Dan Gestur Menggunakan Convolutional Neural Network Ajeng Restu Kusumastuti; Yosi Kristian; Endang Setyati
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 10, No 2 (2021): JULI
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v10i2.1146

Abstract

Abstract—The Covid-19 pandemic has transformed the offline education system into online. Therefore, in order to maximize the learning process, teachers were forced to adapt by having presentations that attract student's attention, including kindergarten teachers. This is a major problem considering the attention rate of children at early age is very diverse combined with their limited communication skill. Thus, there is a need to identify and classify student's learning interest through facial expressions and gestures during the online session. Through this research, student's learning interest were classified into several classes, validated by the teacher. There are three classes: Interested, Moderately Interested, and Not Interested. Trials to get the classification of student's learning interest by teacher validation, carried out by training and testing the cut area of the center of the face (eyes, mouth, face) to get facial expression recognition, supported by the gesture area as gesture recognition. This research has scenarios of four cut areas and two cut areas that were applied to the interest class that utilizes the weight of transfer learning architectures such as VGG16, ResNet50, and Xception. The results of the learning interest classification test obtained a minimum validation percentage of 70%. The result obtained through scenarios of three learning interest classes four cut areas using VGG16 was 75%, while for two cut areas using ResNet50 was 71%. These results proved that the methods of this research can be used to determine the duration and theme of online kindergarten classes.
PREDIKSI KARAKTERISTIK PERSONAL MENGGUNAKAN ANALISIS TANDA TANGAN DENGAN MENGGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) Udkhiati Mawaddah; Hendrawan Armanto; Endang Setyati
Antivirus : Jurnal Ilmiah Teknik Informatika Vol 15 No 1 (2021): Mei 2021
Publisher : Universitas Islam Balitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35457/antivirus.v15i1.1526

Abstract

Graphology is the study of handwriting that can describe the characteristics of a writer and his emotional disposition. Knowing the characteristics of prospective applicants is very important for the Human Resource Development (HRD) that responsible for selecting employees in their fields. HRD often experienced the Mistaken when in the process of hiring employees who identify the candidate employee signature to lose both time and costs in that company. This research using 7 signature features which are divided into two algorithms respectively, 5 signature features consisting are Curved Start, End Streak, Shell, Middle Streaks, Underline and Identification Structure Algorithm consist 2 signature features are Dot Structure and Streaks disconnected. The evaluation results obtained a training data accuracy value of 0.7333, training data loss of 0.7693, test data accuracy of 0.7778, and test data loss of 0.8377 which can be concluded that the results of the two data is underfitting. Thus, we must concern to collecting other dataset which has features similarity in every classes.
Identifikasi Jenis Daging dengan Menggunakan Algoritma Convolution Neural Network Peter Winardi; Endang Setyati
Journal of Information System,Graphics, Hospitality and Technology Vol. 3 No. 02 (2021): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v3i02.178

Abstract

Abstrak — Kebutuhan protein tubuh manusia salah satunya didapatkan dari daging. Banyak jenis daging yang bisa dikonsumsi untuk kebutuhan protein, diantaranya ayam, babi, bebek, kambing, sapi dan jenis lainnya. Pada kondisi daging mentah, tidak semua orang memahami karakteristik / identitas jenis daging karena ada beberapa jenis daging mentah yang hampir sama dari tampilan visual. Untuk menghindari kesalahan saat pemilihan jenis daging yang diinginkan perlu dilakukan identifikasi jenis daging. Pengenalan jenis daging dapat dilakukan dengan pengambilan gambar / citra secara digital. Citra digital yang didapatkan dapat dilakukan identifikasi dengan Convolution Neural Network. Salah satu kemampuan Convolution Neural Network (CNN) dapat melakukan proses identifikasi dan klasifikasi pada Computer Vision. Pada penelitian ini identifikasi jenis daging yang digunakan berupa adalah daging mentah tanpa lemak, kulit dan tulang. Jenis daging mentah yang digunakan sebanyak 5 buah berupa ayam, babi, bebek, kambing dan sapi. Melalui ekstraksi warna dan deteksi tepi beserta CNN didapatkan identitas jenis daging tersebut berupa tulisan / text sesuai jenis daging input citra. Dataset yang digunakan sebanyak 2,250 citra pada masing-masing jenis daging sehingga total 11,250 dataset citra. Penelitian dilakukan dalam 2 bagian sistem arsitektur. Bagian penelitian berupa Training dan Validation beserta testing. Pada bagian training dan validation dilakukan preprocessing . citra resize dari ukuran 300 × 300 piksel menjadi 50 × 50 piksel. Dataset dari masing-masing jenis citra daging mentah yang digunakan 2,250 citra terdiri dari citra jpeg dengan beberapa model citra , diantaranya citra asli, citra cropping, citra flip horisontal RGB, citra flip vertikal RGB, citra RGB, citra channel Red, citra channel Green, citra channel Blue, citra channel Magenta (greyscale), citra flip vertikal dan citra flip horisontal. Output training dan validasi berupa penyimpanan konfigurasi CNN yang dihasilkan untuk pemodelan saat testing beserta grafik cross entropy. Pembagian dataset citra model training dan validasi sebesar 70% training dan 30% validasi. Sistem testing digunakan uji coba menentukan jenis daging untuk mendapatkan output tulisan / text dari nama daging yang sesuai. Bahasa program yang digunakan penelitian berupa Python 3.8 beserta Tensorflow dan Keras dengan aplikasi PyCharm 2020.3.2 community edition. Untuk training dan validasi dilakukan uji coba pertama pada dataset dengan resize citra pada ukuran 50 X 50 pixel didapatkan hasil : training loss= 43.89% ; training accuracy= 82.82% ; validation loss= 87.44% ; validation juga dilakukan pada ukuran accuracy: 72.27%. Uji coba training dan validasi ke dua dilakukan resize citra pada ukuran 100 X 100 pixel dengan hasil : training loss= 35.74% ; training accuracy= 85.75% ; validation loss: 81.08% ; validation accuracy: 71.65%. Uji coba testing didapatkan nilai tertinggi dari angka array hasil pembandaingan dengan penyimpanan konfigurasi training dan validasi. Penelitian identifikasi jenis daging bisa ditingkatkan lebih baik bila dilengkapi dengan dataset citra yang lebih memadai.
Augmented Reality Marker Based Tracking Visualisasi Drawing 2D ke dalam Bentuk 3D dengan Metode FAST Corner Detection Nanang Wahyudi; Reddy Alexandro Harianto; Endang Setyati
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.28

Abstract

Augmented Reality (AR) memungkinkan pengguna dapat melihat objek virtual pada lingkungan nyata. Berbeda dengan Virtual Reality (VR) yang membawa pengguna masuk pada lingkungan virtual sepenuhnya tanpa melihat dunia nyata. Teknologi AR menggunakan marker sebagai target untuk memunculkan objek virtual. Penelitian ini menggunakan Drawing 2D sebagai Marker Based Tracking dalam mendeteksi target untuk memunculkan objek 3D virtual. Gambar 2D atau Drawing 2D merupakan alat untuk menyampaikan maksud dan informasi dari drafter kepada teknisi. Lulusan siswa Sekolah Menengah Kejuruan (SMK) harus mampu memahami Drawing 2D dan memvisualisasikan kedalam bentuk 3D. Kemampuan spasial dalam memvisualisasi ini yang harus dimiliki karena menyangkut masa depan setiap siswa. Pembelajaran materi proyeksi Drawing 2D memerlukan teknis khusus agar mampu di pahami oleh siswa. Aplikasi AR ini menggunakan metode Features from Accelerated Segment Test Corner Detection (FCD) dalam proses tracking. Uji coba penelitian menggunakan 50 marker. Kriteria uji coba deteksi marker dengan posisi tegak lurus, miring 30°, 45°, 60° dan 75° terhadap kamera serta dengan jarak deteksi 20 cm, 30 cm,40 cm,50 cm,dan 60 cm. Dari hasil uji coba untuk deteksi 50 marker disimpulkan bahwa marker dapat terdeteksi pada jarak 50 cm dengan posisi marker tegak lurus, kemiringan 30° maksimum pada jarak 40 cm, dan kemiringan 45° maksimum pada jarak 30 cm. Proses deteksi marker dipengaruhi oleh tingginya spesifikasi perangkat yang digunakan dalam ujicoba, pencahayaan serta besarnya marker yang digunakan.
Klasifikasi Citra Daun Memanfaatkan Angular Partition, Edge Detection dan Neural Network Elkana Lewi Santoso; Endang Setyati; Yosi Kristian
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.32

Abstract

Penelitian yang dilakukan dalam Tesis ini adalah mengklasifikasikan 1907 daun berasal dari 32 jenis tanaman yang berbeda. Foto tersebut diambil dari website flavia. Proses klasifikasi daun-daun dilakukan dengan menggunakan Neural Network dengan metode Back Propagation Neural Network (BPNN). Tahap awal adalah mengubah ukuran gambar yang didapat dari flavia 1600x1200 piksel menjadi berukuran 300x225 piksel, terdiri dari tahap membuat gambar dengan Sobel untuk mendeteksi tepi, membuat gambar dengan Sobel dan menambah kecerahan gambar, sehingga tepi dan serat daun dapat lebih jelas. Citra daun di potong-potong dengan angular partition (sudut pembagi) 5°, 11.25°, 22.5°, 30°, 45° dan 90°. Pembuatan data set dengan delapan ekstrasi fitur daun yang terdiri dari menghitung : jumlah piksel-piksel pada bagian daun, jumlah piksel pada keliling daun, jumlah sudut pada daun, jumlah piksel pada keliling dan serat daun serta menghitung jarak tiap-tiap piksel tersebut dengan center of gravity (titik berat). Pada penelitian ini dilakukan 100 macam variasi nilai layer tersembunyi untuk tiap-tiap sudut pembagi tersebut. Hasil dari penelitian ini adalah : semakin kecil sudut pembagi(5°) dan semakin besar sudut pembagi (90°) tidak menghasilkan akurasi yang semakin bagus. Hasil akurasi tertinggi yang diraih sebesar 96,7488%. Hasil tersebut didapat dengan membagi daun menjadi sudut 11,25° tiap bagian (16 bagian), Susunan BPNN yang digunakan terdiri dari 1 input, 1 output, 3 hiden layer , tiap layer tersembunyi berisi 128, 120, 112 neurons, dan 32 neurons untuk output layer.
Identifikasi Foto Wanita Berhijab dari Majalah Untuk Pembuatan Katalog Busana Muslim Otomatis Memanfaatkan Convolutional Neural Network M. Najamudin Ridha; Endang Setyati; Yosi Kristian
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.87

Abstract

Abstrak—Perkembangan Fashion Muslim di Indonesia terus meningkat, disisi lain terobosan baru pada Deep Learning dengan memadukan arsitektur seperti dropout regularizations dan Rectified Linear Unit (ReLU) sebagai fungsi aktivasi dan data augmentation, mampu mencapai terobosan pada large scale image classification. Penelitian ini menggunakan metode deteksi objek wajah dengan Haar Cascades Classification untuk mendapatkan sample dataset wajah dan preprocessing data testing untuk dilanjutkan pada metode machine learning untuk klasifikasi citra dengan Convolutional Neural Network. Dataset yang digunakan adalah kumpulan katalog busana online, dataset yang sudah di preprocessing dibagi menjadi dua kategori, yaitu Hijab untuk semua citra wanita berhijab, dan Non Hijab untuk citra yang bukan wanita berhijab. selanjutnya klasifikasi citra menggunakan data ujicoba majalah digital terbitan Hijabella, Joy Indonesia dan Scarf Indonesia. Semakin besar resolusi citra input untuk preprocessing pada majalah digital, maka akan semakin banyak objek citra yang terdeteksi, dengan meningkatkan jumlah dataset untuk training dan validasi, mampu menambah hasil akurasi yang didapatkan, terjadi peningkatan akurasi pada dataset 2.500 wajah perkategori ke 5.000 wajah perkategori dengan resolusi 720p meningkat dari rata-rata 81.30% menjadi 82.31%, peningkatan rata-rata 1.01% dan tertinggi 2.14%, sedangkan resolusi 1080p meningkat dari rata-rata 83.03% menjadi 83.68%, peningkatan rata-rata 0.65% dan tertinggi 1.73%, akurasi tertinggi adalah sebesar 84.72% menggunakan model dataset 5.000 secara acak perkategori.
Pengenalan Tulisan Pada Iklan Pinggir Jalan yang Melengkung Menggunakan Shape Context Endang Setyati; Raymond Sugiarto
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.202

Abstract

Membaca sebuah tulisan yang sama di bidang melengkung berbeda dengan di bidang datar, karena tulisan pada bidang melengkung bergantung pada permukaan bidang lengkungnya. Pada saat ini, banyak sekali tulisan pada iklan pinggir jalan yang ditempel pada bidang melengkung di sepanjang jalan. Tulisan yang digunakan berupa huruf dan angka, dengan berbagai macam background, bentuk dan warna yang diambil di pinggir jalan dengan menggunakan Farey Shape Context. Fitur Farey ini bergantung pada DSS (Digital Straight Line Segment) endpoint dan menggunakan pecahan Augmented Farey sequence. DSS endpoint ini dijadikan sebagai titik fitur atau feature point untuk menemukan shape context dari citra. DSS endpoint tersebut digunakan sebagai acuan bounding box yang akan digunakan sebagai object boundary yang dimana setiap sudutnya merupakan reference point. Untuk melakukan Binning Farey Rank, Augmented Farey Table (AFT) harus dibentuk terlebih dahulu berdasarkan Augmented Farey Sequence yang merupakan pengembangan dari Farey Sequence. Farey Sequence hanya meliputi pecahan dengan pembilang dan penyebut yang positif, sedangkan Augmented Farey Sequence meliputi pecahan dengan pembilang dan penyebut positif serta negatif. Pada penelitian ini digunakan 500 data iklan di pinggir jalan yang melengkung, dimana 70% digunakan sebagai data sample. Dari 70% data sample tersebut didapatkan ribuan karakter berupa huruf dan angka yang dijadikan data sample. Berdasarkan hasil uji coba penelitian yang dilakukan pada 500 Gambar dimana 30% sebagai data testing, maka hasil Farey Shape Context untuk mengenali tulisan berupa huruf dan angka pada iklan pinggir jalan yang melengkung mencapai akurasi benar 74.94% dan salah 25.06%.