Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Insyst : Journal of Intelligent System and Computation

Augmented Reality Marker Based Tracking Visualisasi Drawing 2D ke dalam Bentuk 3D dengan Metode FAST Corner Detection Nanang Wahyudi; Reddy Alexandro Harianto; Endang Setyati
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.28

Abstract

Augmented Reality (AR) memungkinkan pengguna dapat melihat objek virtual pada lingkungan nyata. Berbeda dengan Virtual Reality (VR) yang membawa pengguna masuk pada lingkungan virtual sepenuhnya tanpa melihat dunia nyata. Teknologi AR menggunakan marker sebagai target untuk memunculkan objek virtual. Penelitian ini menggunakan Drawing 2D sebagai Marker Based Tracking dalam mendeteksi target untuk memunculkan objek 3D virtual. Gambar 2D atau Drawing 2D merupakan alat untuk menyampaikan maksud dan informasi dari drafter kepada teknisi. Lulusan siswa Sekolah Menengah Kejuruan (SMK) harus mampu memahami Drawing 2D dan memvisualisasikan kedalam bentuk 3D. Kemampuan spasial dalam memvisualisasi ini yang harus dimiliki karena menyangkut masa depan setiap siswa. Pembelajaran materi proyeksi Drawing 2D memerlukan teknis khusus agar mampu di pahami oleh siswa. Aplikasi AR ini menggunakan metode Features from Accelerated Segment Test Corner Detection (FCD) dalam proses tracking. Uji coba penelitian menggunakan 50 marker. Kriteria uji coba deteksi marker dengan posisi tegak lurus, miring 30°, 45°, 60° dan 75° terhadap kamera serta dengan jarak deteksi 20 cm, 30 cm,40 cm,50 cm,dan 60 cm. Dari hasil uji coba untuk deteksi 50 marker disimpulkan bahwa marker dapat terdeteksi pada jarak 50 cm dengan posisi marker tegak lurus, kemiringan 30° maksimum pada jarak 40 cm, dan kemiringan 45° maksimum pada jarak 30 cm. Proses deteksi marker dipengaruhi oleh tingginya spesifikasi perangkat yang digunakan dalam ujicoba, pencahayaan serta besarnya marker yang digunakan.
Klasifikasi Citra Daun Memanfaatkan Angular Partition, Edge Detection dan Neural Network Elkana Lewi Santoso; Endang Setyati; Yosi Kristian
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.32

Abstract

Penelitian yang dilakukan dalam Tesis ini adalah mengklasifikasikan 1907 daun berasal dari 32 jenis tanaman yang berbeda. Foto tersebut diambil dari website flavia. Proses klasifikasi daun-daun dilakukan dengan menggunakan Neural Network dengan metode Back Propagation Neural Network (BPNN). Tahap awal adalah mengubah ukuran gambar yang didapat dari flavia 1600x1200 piksel menjadi berukuran 300x225 piksel, terdiri dari tahap membuat gambar dengan Sobel untuk mendeteksi tepi, membuat gambar dengan Sobel dan menambah kecerahan gambar, sehingga tepi dan serat daun dapat lebih jelas. Citra daun di potong-potong dengan angular partition (sudut pembagi) 5°, 11.25°, 22.5°, 30°, 45° dan 90°. Pembuatan data set dengan delapan ekstrasi fitur daun yang terdiri dari menghitung : jumlah piksel-piksel pada bagian daun, jumlah piksel pada keliling daun, jumlah sudut pada daun, jumlah piksel pada keliling dan serat daun serta menghitung jarak tiap-tiap piksel tersebut dengan center of gravity (titik berat). Pada penelitian ini dilakukan 100 macam variasi nilai layer tersembunyi untuk tiap-tiap sudut pembagi tersebut. Hasil dari penelitian ini adalah : semakin kecil sudut pembagi(5°) dan semakin besar sudut pembagi (90°) tidak menghasilkan akurasi yang semakin bagus. Hasil akurasi tertinggi yang diraih sebesar 96,7488%. Hasil tersebut didapat dengan membagi daun menjadi sudut 11,25° tiap bagian (16 bagian), Susunan BPNN yang digunakan terdiri dari 1 input, 1 output, 3 hiden layer , tiap layer tersembunyi berisi 128, 120, 112 neurons, dan 32 neurons untuk output layer.
Identifikasi Foto Wanita Berhijab dari Majalah Untuk Pembuatan Katalog Busana Muslim Otomatis Memanfaatkan Convolutional Neural Network M. Najamudin Ridha; Endang Setyati; Yosi Kristian
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.87

Abstract

Abstrak—Perkembangan Fashion Muslim di Indonesia terus meningkat, disisi lain terobosan baru pada Deep Learning dengan memadukan arsitektur seperti dropout regularizations dan Rectified Linear Unit (ReLU) sebagai fungsi aktivasi dan data augmentation, mampu mencapai terobosan pada large scale image classification. Penelitian ini menggunakan metode deteksi objek wajah dengan Haar Cascades Classification untuk mendapatkan sample dataset wajah dan preprocessing data testing untuk dilanjutkan pada metode machine learning untuk klasifikasi citra dengan Convolutional Neural Network. Dataset yang digunakan adalah kumpulan katalog busana online, dataset yang sudah di preprocessing dibagi menjadi dua kategori, yaitu Hijab untuk semua citra wanita berhijab, dan Non Hijab untuk citra yang bukan wanita berhijab. selanjutnya klasifikasi citra menggunakan data ujicoba majalah digital terbitan Hijabella, Joy Indonesia dan Scarf Indonesia. Semakin besar resolusi citra input untuk preprocessing pada majalah digital, maka akan semakin banyak objek citra yang terdeteksi, dengan meningkatkan jumlah dataset untuk training dan validasi, mampu menambah hasil akurasi yang didapatkan, terjadi peningkatan akurasi pada dataset 2.500 wajah perkategori ke 5.000 wajah perkategori dengan resolusi 720p meningkat dari rata-rata 81.30% menjadi 82.31%, peningkatan rata-rata 1.01% dan tertinggi 2.14%, sedangkan resolusi 1080p meningkat dari rata-rata 83.03% menjadi 83.68%, peningkatan rata-rata 0.65% dan tertinggi 1.73%, akurasi tertinggi adalah sebesar 84.72% menggunakan model dataset 5.000 secara acak perkategori.
Pengenalan Tulisan Pada Iklan Pinggir Jalan yang Melengkung Menggunakan Shape Context Endang Setyati; Raymond Sugiarto
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : LPPM ISTTS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.202

Abstract

Membaca sebuah tulisan yang sama di bidang melengkung berbeda dengan di bidang datar, karena tulisan pada bidang melengkung bergantung pada permukaan bidang lengkungnya. Pada saat ini, banyak sekali tulisan pada iklan pinggir jalan yang ditempel pada bidang melengkung di sepanjang jalan. Tulisan yang digunakan berupa huruf dan angka, dengan berbagai macam background, bentuk dan warna yang diambil di pinggir jalan dengan menggunakan Farey Shape Context. Fitur Farey ini bergantung pada DSS (Digital Straight Line Segment) endpoint dan menggunakan pecahan Augmented Farey sequence. DSS endpoint ini dijadikan sebagai titik fitur atau feature point untuk menemukan shape context dari citra. DSS endpoint tersebut digunakan sebagai acuan bounding box yang akan digunakan sebagai object boundary yang dimana setiap sudutnya merupakan reference point. Untuk melakukan Binning Farey Rank, Augmented Farey Table (AFT) harus dibentuk terlebih dahulu berdasarkan Augmented Farey Sequence yang merupakan pengembangan dari Farey Sequence. Farey Sequence hanya meliputi pecahan dengan pembilang dan penyebut yang positif, sedangkan Augmented Farey Sequence meliputi pecahan dengan pembilang dan penyebut positif serta negatif. Pada penelitian ini digunakan 500 data iklan di pinggir jalan yang melengkung, dimana 70% digunakan sebagai data sample. Dari 70% data sample tersebut didapatkan ribuan karakter berupa huruf dan angka yang dijadikan data sample. Berdasarkan hasil uji coba penelitian yang dilakukan pada 500 Gambar dimana 30% sebagai data testing, maka hasil Farey Shape Context untuk mengenali tulisan berupa huruf dan angka pada iklan pinggir jalan yang melengkung mencapai akurasi benar 74.94% dan salah 25.06%.