Ibrahim Alhamrouni
Universiti Kuala Lumpur (UniKL BMI)

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design of shunt hybrid active power filter for compensating harmonic currents and reactive power Ibrahim Alhamrouni; F. N. Hanafi; Mohamed Salem; Nadia H. A. Rahman; Awang Jusoh; Tole Sutikno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.15156

Abstract

For the past two decades, tremendous advancements have been achieved in the electricity industry. The usage of non-linear loads in the daily life has affected the power quality of the system and caused the presence of harmonics. To compensate the harmonic currents and reactive power in the system, the design of shunt hybrid active power filter has been proposed in this research. The design of the filter has included several control systems of instantaneous active and reactive power (p-q) theory and PI controller to investigate the performance of the filter. The robustness of the designed hybrid power filter has also been benchmarked with the other filter topologies available in literature. The hybrid power filter will combine passive power filter and active power filter configurated in shunt connection. The result of this research showed that the total harmonic distortion analyzed is below than 5% according to IEEE-519 standard requirements and reactive power is compensated proved by the increase in power factor. The shunt hybrid active power filter is designed, and simulation result is analyzed by using MATLAB-Simulink environment.
Optimal power scheduling of renewable energy sources in micro-grid via distributed energy storage system Ibrahim Alhamrouni; Firdaus Ramli; Mohamed Salem; Bazilah Ismail; Awang Jusoh; Tole Sutikno
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.15159

Abstract

This research is mainly focusing on the optimal power management by controlling the charging and discharging modes of the battery storage of the micro-grid (MG). A droop-based controller or battery controller is proposed for this work in order to optimize the power management of the battery. Charging and discharging modes are controlled by the droop-based characteristic where it will perform as a battery controller for the battery storage. Furthermore, the charging and discharging rates will depend on the signal from the MG at power secondary and its signal will be read by the battery controller and choose either to charge or discharge the battery storage where it will suffice the energy demand by loads in the micro-grid. The simulation results show the effectiveness of the controller to control sharing the power based on the desired energy from the battery storage to the loads at the MG. Moreover, all the critical cases have been advised, such as sudden decrease or disturbance of any generating unit. The result has been observed that due to sudden decrease or disturbance of any generating unit, the battery controller manages to control the charging and discharging rate based on the insufficient energy caused by the disturbance to fulfil the demand at MG.