Ari Kusumaningsih
University of Trunojoyo Madura

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Double Difference Motion Detection and Its Application for Madura Batik Virtual Fitting Room Rima Triwahyuningrum; Indah Agustien Siradjuddin; Yonathan Fery Hendrawan; Arik Kurniawati; Ari Kusumaningsih
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 4: December 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i4.2236

Abstract

Madura Batik Virtual Fitting Room using double difference algorithms motion detection is proposed in this research. This virtual fitting room consists of three main stages, i.e. motion detection, determination of region of interest of the detected motion, superimposed the virtual clothes into the region of interest. The double difference algorithm is used for the motion detection stage, since in this algorithm, the empty frame as the reference frame is not required. The double difference algorithm uses the previous and next frame to detect the motion in the current frame. Perception Test Images Sequences Dataset are used as the data of the experiment to measure the performance accuracy of this algorithm before the algorithm is used for the Madura batik virtual fitting room. The accuracy is 57.31%, 99.71%, and 78.52% for the sensitivity, specificity, and balanced accuracy, respectively. The build Madura batik virtual fitting room in this research can be used as the added feature of the Madura batik online stores, hence the consumer is able to see whether the clothes is fitted to them or not, and this virtual fitting room is also can be used as the promotion of Madura batik broadly.
Performance Analysis of Color Cascading Framework on Two Different Classifiers in Malaria Detection Cucun Very Angkoso; Yonathan Ferry Hendrawan; Ari Kusumaningsih; Rima Tri Wahyuningrum
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (327.072 KB) | DOI: 10.11591/eecsi.v5.1605

Abstract

Malaria, as a dangerous disease globally, can be reduced its number of victims by finding a method of infection detection that is fast and reliable. Computer-based detection methods make it easier to identify the presence of plasmodium in blood smear images. This kind of methods is suitable for use in locations far from the availability of health experts. This study explores the use of two methods of machine learning on Cascading Color Framework, ie Backpropagation Neural Network and Support Vector Machine. Both methods were used as classifier in detecting malaria infection. From the experimental results it was found that Cascading Color Framework improved the classifier performance for both in Support Vector Machine and Backpropagation Neural Network.