Mohd Fairus Mohd Yusoff
Universiti Teknologi Malaysia

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Circular polarization folded reflectarray antenna for 5G applications Mohd Fairus Mohd Yusoff; Lim Jit Min; Mohamad Rijal Hamid; Zaharah Johari; Muhammad Naeem Iqbal
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 5: October 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i5.12812

Abstract

Fifth-generation (5G) is a wireless connection built specifically to keep up with the rapid increase of devices that need a mobile internet connection. A system working on 5G band can provide higher bandwidth and faster data rate as compared to fourth-generation (4G) band. Thus, an antenna with higher gain and lower profile is required to support this system. On the other hand, the performance of circular polarization antenna is better than linear polarization antenna due to its ability to accept wave from different direction. In this project, a low profile circular polarization folded reflectarray antenna with operating frequency of 28 GHz is presented. This project is divided into two parts. In the first part, a linear polarization folded reflectarray antenna is designed. In this second part, a meander lines polarizer is used to convert the linear polarization antenna to circular polarization antenna. The antenna is fed by a linear polarized waveguide. Each radiating element of the antenna is in rectangular shape. The size of the radiating elements are selected according to obtain required phase delay to form a planar phase front in the far-field distance. Both of the antennas are simulated by using Computer Simulation Technology (CST) software. Finally, the results shows excellent performances with 16.81dB directivity and 1.49dB axial ratio at 28GHz. Thus, the antenna is very suitable for 5G applications.
A compact triband microstrip antenna utilizing hexagonal CSRR for wireless communication systems Murtala Aminu- Baba; Mohamad Kamal A. Rahim; Farid Zubir; Mohd Fairus Mohd Yusoff; Adamu Y Iliyasu; Mohammed Mustapha Gajibo; Huda A. Majid; K. I Jahun
Bulletin of Electrical Engineering and Informatics Vol 9, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (773.846 KB) | DOI: 10.11591/eei.v9i5.2191

Abstract

In this paper, a compact triband printed antenna with hexagonal complementary split-ring resonators (CSRRs) for 4G applications is proposed. The proposed multiband antenna is comprised of a rectangular patch antenna on the top plane, while on the ground plane, hexagonal CSRRs are etched for size miniaturization (at the lower bands) and multiband generation. Another effect of the CSRR is the shifting of the initial resonance of the patch antenna from 5.17 GHz to the higher band of 6.18 GHz. The triband of 180 MHz 2.4~2.59, 150 MHz 2.79~2.94 and 420 MHz 6.04~6.46 GHz bands acquired can cover WLAN/Wi-Fi and WiMAX operating bands adequately. This can be achieved by choosing the optimal size and position of the CSRR on the ground plane carefully. The design occupies a total size of 45 x 45 mm2 using the low-cost FR-4 substrate. Good agreements are obtained between the measured results and the simulated, which are discussed and presented.
Multiband hairpin-line bandpass filters by using metamaterial complimentary split ring resonator Mohd Fairus Mohd Yusoff; Muhammad Akram Mohd Sobri; Farid Zubir; Zaharah Johari
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 7, No 2: June 2019
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.49 KB) | DOI: 10.52549/ijeei.v7i2.1172

Abstract

Telecommunication systems for the new generation have greatly stimulated the demand for multi-band bandpass filters with compact dimensions, low insertion loss, robust, low cost and less complex design. In this paper, a compact multi-band bandpass filter, with the fractional bandwidth of 40% and 20% at resonant frequency 3.5 and 5.5 GHz respectively with the response of Chebyshev passband ripple of 0.1 dB is presented. This bandpass filter is suitable for WiMAX application. The design is based on the hairpin-line configuration and metamaterial of complementary split ring resonator structure. The hairpin-line is used for the compact structure design and easy to fabricate because it has open-circuited ends that require no grounding. While the complementary split ring resonator structure is easy to design and can provide multi-band without affecting of size and performance of the filter. The simulated results show the dual-band bandpass response with the insertion loss is 0 dB and high attenuation at stopband. The proposed filter provides a compact, low insertion loss, and less complex structure design that are promising candidates in order to meet the demands of the new generation of communication systems.
Wideband Frequency Selective Surface Based Transmitarray Antenna at X-Band Muhammad Naeem Iqbal; Mohd Fairus Mohd Yusoff; Mohammad Kamal A Rahim; Mohamad Rijal Hamid; Farid Zubir; Zaharah Johari; Huda Bin A Majid
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 3: September 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i3.1270

Abstract

In this paper, a wideband multilayer transmitarray antenna is designed for Ku frequency band. The unit cell is designed at 12GHz using frequency selective surface structure. Double square ring with center patch based multilayer unit cell is simulated. The effect of substrate thickness variation on transmission coefficient magnitude and phase range is discussed. The horn antenna designed at X-band will be used as feed source for transmitarray antenna. Transmitarray simulation results show wide impedance bandwidth from 10 to 13GHz. Wide gain bandwidth of 1.975GHz with peak gain of 18.96dB is achieved. The proposed transmitarray design will find applications in high gain, directional, low profile antennas for X-band communication systems.
Indoor Channel Capacity Measurement of 2 x 2 MIMO Polarization Diversity Antenna Mohamed Nasrun Osman; Mohamad Kamal A. Rahim; Mohamad Rijal Hamid; Mohd Fairus Mohd Yusoff; Mohamad Zoinol Abidin A. Aziz; Muzammil Jusoh; Muhammad Azfar Abdullah; Nursaidah Muhamad Nadzir
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i3.pp1196-1202

Abstract

This paper presents the channel capacity investigation and the polarization reconfigurable antenna analysis for MIMO system in an indoor scenario. A single and dual-port polarization reconfigurable antenna is used at the receiver end to study the effect of polarization diversity configurations towards the achievable performance of the channel capacity. The polarization reconfigurable antennas are developed through two techniques, which are slits perturbation for single-port and feeding network modification for dual-port. The benefits offered by the designed antennas are investigated when being used as a receiver in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The results show the proposed antennas are suitable to be adopted and highly potential to improve the channel capacity of the MIMO systems.