Claim Missing Document
Check
Articles

Found 7 Documents
Search

Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (553.223 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.
Fabrication of new ceramics nanocomposites for solar energy storage and release Aseel Hadi; Ahmed Hashim Ah-yasari; Dalal Hassan
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (196.606 KB) | DOI: 10.11591/eei.v9i1.1323

Abstract

The carbides nanostructures have huge applications in renewable energy fields such as the saving of solar energy and release which attributed to the good their properties (thermal, electrical, mechanical, optical and chemical). So, in this paper, the solar energy storage and release of carbides nanoparticles/water for building heating and cooling applications have been investigated with different concentrations of metals carbides nanoparticles (tantalum carbide-silicon carbide). The results showed that the melting and solidification times for thermal energy storage and release decrease with an increase (TaC-SiC) nanoparticles concentrations. From the obtained results, the TaC/SiC nanostructures/ water nano-system are considered as promising materials for solar energy storage and release with high efficiency and high gain (more than 50% compare with the water). Also, the TaC/SiC may be used for heating and cooling fields with good performance and high gain.
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studying their A.C Electrical Properties for Piezoelectric Applications Dalal Hassan; Ahmed Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (544.965 KB) | DOI: 10.11591/eei.v7i4.969

Abstract

Piezoelectric materials have been prepared from (poly-methyl methacrylate-lead oxide) nanocomposites for electronic applications. The lead oxide nanoparticles were added to poly-methyl methacrylate by different concentrations are (4, 8, and 12) wt%. The structural and dielectric properties of nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of nanocomposites decrease with increase in frequency of applied electric field. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of poly-methyl methacrylate increase with increase in lead oxide nanoparticles concentrations. The results of pressure sensor showed that the electrical resistance of (PMMA-PbO2) nanocomposites decreases with increase in pressure.
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studying their A.C Electrical Properties for Piezoelectric Applications Dalal Hassan; Ahmed Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (544.965 KB) | DOI: 10.11591/eei.v7i4.969

Abstract

Piezoelectric materials have been prepared from (poly-methyl methacrylate-lead oxide) nanocomposites for electronic applications. The lead oxide nanoparticles were added to poly-methyl methacrylate by different concentrations are (4, 8, and 12) wt%. The structural and dielectric properties of nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of nanocomposites decrease with increase in frequency of applied electric field. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of poly-methyl methacrylate increase with increase in lead oxide nanoparticles concentrations. The results of pressure sensor showed that the electrical resistance of (PMMA-PbO2) nanocomposites decreases with increase in pressure.
Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1191.014 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied.The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studying their A.C Electrical Properties for Piezoelectric Applications Dalal Hassan; Ahmed Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (544.965 KB) | DOI: 10.11591/eei.v7i4.969

Abstract

Piezoelectric materials have been prepared from (poly-methyl methacrylate-lead oxide) nanocomposites for electronic applications. The lead oxide nanoparticles were added to poly-methyl methacrylate by different concentrations are (4, 8, and 12) wt%. The structural and dielectric properties of nanocomposites were studied. The results showed that the dielectric constant and dielectric loss of nanocomposites decrease with increase in frequency of applied electric field. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of poly-methyl methacrylate increase with increase in lead oxide nanoparticles concentrations. The results of pressure sensor showed that the electrical resistance of (PMMA-PbO2) nanocomposites decreases with increase in pressure.
Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application Dalal Hassan; Ahmed Hashim Ah-yasari
Bulletin of Electrical Engineering and Informatics Vol 8, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1191.014 KB) | DOI: 10.11591/eei.v8i1.1019

Abstract

The preparation of (polystyrene-copper oxide) nanocomposites have been investigated for piezoelectric application. The copper oxide nanoparticles were added to polystyrene by different concentrations are (0, 4, 8 and 12) wt.%. The structural and A.C electrical properties of (PS-CuO) nanocomposites were studied.The results showed that the dielectric constant and dielectric loss of (PS-CuO) nanocomposites decrease with increase in frequency. The A.C electrical conductivity increases with increase in frequency. The dielectric constant, dielectric loss and A.C electrical conductivity of polystyrene increase with increase in copper oxide nanoparticles concentrations. The results of piezoelectric application showed that the electrical resistance of (PS-CuO) nanocomposites decreases with increase in pressure.