Dinh-Thuan Do
Eastern International University

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Secure outage probability of cognitive radio network relying non-orthogonal multiple access scheme Chi-Bao Le; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2116

Abstract

This paper studies the secondary network relying relay selection to transmit signal from the secondary source (base station) to two destinations. Especially, two destinations are required non-orthogonal multiple access (NOMA) scheme and it benefits to implementation of the Internet of Things (IoT) systems. However, eavesdropper over-hears signal related link from selected relay to destination. This paper measure secure performance via metric, namely secure outage probability (SOP). In particular, signal to noise ratio (SNR) criterion is used to evalute SOP to provide reliable transmission to the terminal node. Main results indicates that the considered scheme provides performance gap among two signals at destination. The exactness of derived expressions is confirmed via numerical simulation.
Benefiting wireless power transfer scheme in power domain based multiple access: ergodic rate performance evaluation Anh-Tu Le; Minh-Sang Van Nguyen; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2215

Abstract

Power domain based multiple access scheme is introduced in this paper, namely Non-orthogonal multiple-access (NOMA). We deploy a wireless network using NOMA together with a wireless power transfer (WPT) scheme for dedicated user over Nakagami-$m$ fading channel. When combined, these promising techniques (NOMA and WPT) improve the system performance in term of ergodic performance at reasonable coefficient of harvested power. However, fixed power allocation factors for each NOMA user can be adjusted at the base station and it further provide performance improvement. We design a new signal frame to deploy a NOMA scheme in WPT which adopts a linear energy harvesting model. The ergodic capacity in such a NOMA network and power allocation factors can be updated frequently in order to achieve a fair distribution among NOMA users. The exact expressions of ergodic capacity for each user is derived. The simulation results show that an agreement between analytic performance and Monte-Carlo simulation can be achieved. 
Studying strictly positive secure capacity in cognitive radio-based non-orthogonal multiple access Chi-Bao Le; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.2117

Abstract

This paper studies a downlink security-aware secure outage performance in the secondary network of cognitive radio-assisted non-orthogonal multiple access network (CR-NOMA). The multiple relay is employed to assist transmission from the secondary source to destinations. The security-aware performance is subject to constraints in fixed power allocation factor assigned to each secondary user. The security-aware secure performance is based on channel state information (CSI) at the physical layer in which an eavesdropper intends to steal information. According to the considered system, exact expressions of Strictly positive secure capacity (SPSC) are proved to analyze system in terms of secure performance. Finally, the secondary user secure problem is evaluated via Monte-Carlo simulation method. The main results indicate that the secure performance of proposed system can be improved significantly.
Implement of multiple access technique by wireless power transfer and relaying network Anh-Tu Le; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.1903

Abstract

In this paper, we investigate non-orthogonal multiple access (NOMA) network relying on wireless power transfer to prolong lifetime. The base station (BS) sends common signals to the relay with two functions (energy harvesting (EH) and signal processing) to further serve two NOMA users in downlink. Performance gap exists since different power allocation factor assigned from power splitting protocol adopted at the relay and such relay employs both amplify-and-forward (AF) and decode-and-forward schemes. To provide performance metrics, we prove formulas of the outage probability which is a function of transmit signal to noise ratio. Simulation results indicate specific parameters to adjust system performance of two user in the considered EH-NOMA system. This finding is important recommendation to design EH-NOMA which shows particular outage performance at required target rates.
Joint impacts of relaying scheme and wireless power transfer in multiple access of cellular networks Anh-Tu Le; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 10, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i2.1936

Abstract

This paper considers ergodic capacity of energy harvesting (EH) based cellular networks. Such a network employs non-orthogonal multiple access (NOMA) together with relaying scheme to serve two far users. In this system model, relay is facilitated power splitting (PS) protocol to implement energy harvesting (EH). To examine capacity, expressions of signal to noise ratio (SNR) need be computed to achieve capacity. Power allocation factors are different for two users in such system and hence performance gap happens to distinguish requirements for separated users. It can be confirmed that the proposed paradigm exhibits maximal achievable capacity in some scenarios of setting parameters. To confirm exactness of the analytical expressions and show advantages of the proposed EH-NOMA, simulation results are performed in terms of ergodic capacity.
Security performance analysis for power domain NOMA employing in cognitive radio networks Thi-Anh Hoang; Chi-Bao Le; Dinh-Thuan Do
Bulletin of Electrical Engineering and Informatics Vol 9, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1076.26 KB) | DOI: 10.11591/eei.v9i3.1639

Abstract

The power domain non-orthogonal multiple access (NOMA) technique introduces one of the fundamental characteristics and it exhibits the possibility of users to decode the messages of the other paired users on the same resources. In cognitive radio inspired NOMA (CR-NOMA), the base station (BS) has to serve untrusted users or users with different security clearance. This phenomenon raises a security threat particularly in such CR-NOMA. This paper develops a tractable analysis framework to evaluate the security performance of cooperative non-orthogonal multiple access (NOMA) in cognitive networks, where relay is able to serve two far NOMA users in the presence of external eavesdropper. In particular, we study the secrecy outage probability in a two-user NOMA system. This situation happens in practical the BS is pairing a legitimate user with another untrusted user. Main reason is that the non-uniform distribution in terms of trusted and untrusted users in the cell. By performing numerical results demonstrate the performance improvements of the proposed NOMA scheme in comparison to that of several situations in terms of different parameters. Furthermore, the security performance of NOMA is shown to verify the derived expressions.