Nordiana Azlin binti Othman
Universiti Tun Hussein Onn Malaysia (UTHM)

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Comparison on space charge and voltage distribution of high voltage insulator subjected to different contamination levels N. A. Samuri; Nordiana Azlin binti Othman; M. A. M. Piah; N. A. M. Jamail; H. Rosli
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.851 KB) | DOI: 10.11591/eei.v8i3.1585

Abstract

This paper presents the study of space charge distribution on high voltage (HV) insulators under different levels of contamination. Two types of HV insulators were used in this work particularly glass and porcelain insulators. A string of 4-unit glass and porcelain insulators with 33 kV of lines voltage was designed and simulated using QuickfieldTM software. Four levels of contamination layer with different thickness have been applied on the surface of insulators to observe the effect of space charge distribution. Simulation results show that different types of insulators used at transmission lines give different effects on charge and voltage distribution. It is also found that the amplitude of charge for a single porcelain insulator is much higher compared to a single glass insulator. Similarly for a string of 4-unit insulators, the voltage distribution along the creepage distance of porcelain insulators is much higher compared to glass insulators under all contamination levels.
Top oil heat distribution pattern of ONAN corn oil based transformer with presence of hot spot study using FEMM M. A. Husin; Nordiana Azlin binti Othman; N. A. Muhammad; H. Kamarden; M. S. Kamarudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.442 KB) | DOI: 10.11591/eei.v8i3.1602

Abstract

Transformer thermal modelling is a crucial aspect to be considered as this may help the determination of heat capacity of transformer. This paper present, simulation study on Oil Natural Air Natural (ONAN) transformer heat distribution pattern with and without presence of hot spot temperature (HST). This paper aims to compare the effects of different HST value at different locations inside the transformer unit as well as to evaluate the top oil thermal behaviour of corn oil as cooling mechanism in a transformer. To achieve aforementioned objectives, three HSTs were introduced to the 30 MVA transformer winding to find the total heat build-up in the top of the transformer tank. The outcome of thermal properties is examined using x-y temperature plot. From the results found that the location of HST affects overall transformer’s temperature. HST at the top of the winding give a significant effect compared to when HST is at the bottom of the winding. It is also evident that the usage of corn oil reduced the temperature distribution of the transformer. The findings suggest that the temperature distribution study especially on transformer is important to monitor in-service transformer in a non-invasive manner.
Comparison on space charge and voltage distribution of high voltage insulator subjected to different contamination levels N. A. Samuri; Nordiana Azlin binti Othman; M. A. M. Piah; N. A. M. Jamail; H. Rosli
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.851 KB) | DOI: 10.11591/eei.v8i3.1585

Abstract

This paper presents the study of space charge distribution on high voltage (HV) insulators under different levels of contamination. Two types of HV insulators were used in this work particularly glass and porcelain insulators. A string of 4-unit glass and porcelain insulators with 33 kV of lines voltage was designed and simulated using QuickfieldTM software. Four levels of contamination layer with different thickness have been applied on the surface of insulators to observe the effect of space charge distribution. Simulation results show that different types of insulators used at transmission lines give different effects on charge and voltage distribution. It is also found that the amplitude of charge for a single porcelain insulator is much higher compared to a single glass insulator. Similarly for a string of 4-unit insulators, the voltage distribution along the creepage distance of porcelain insulators is much higher compared to glass insulators under all contamination levels.
Top oil heat distribution pattern of ONAN corn oil based transformer with presence of hot spot study using FEMM M. A. Husin; Nordiana Azlin binti Othman; N. A. Muhammad; H. Kamarden; M. S. Kamarudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.442 KB) | DOI: 10.11591/eei.v8i3.1602

Abstract

Transformer thermal modelling is a crucial aspect to be considered as this may help the determination of heat capacity of transformer. This paper present, simulation study on Oil Natural Air Natural (ONAN) transformer heat distribution pattern with and without presence of hot spot temperature (HST). This paper aims to compare the effects of different HST value at different locations inside the transformer unit as well as to evaluate the top oil thermal behaviour of corn oil as cooling mechanism in a transformer. To achieve aforementioned objectives, three HSTs were introduced to the 30 MVA transformer winding to find the total heat build-up in the top of the transformer tank. The outcome of thermal properties is examined using x-y temperature plot. From the results found that the location of HST affects overall transformer’s temperature. HST at the top of the winding give a significant effect compared to when HST is at the bottom of the winding. It is also evident that the usage of corn oil reduced the temperature distribution of the transformer. The findings suggest that the temperature distribution study especially on transformer is important to monitor in-service transformer in a non-invasive manner.
Top oil heat distribution pattern of ONAN corn oil based transformer with presence of hot spot study using FEMM M. A. Husin; Nordiana Azlin binti Othman; N. A. Muhammad; H. Kamarden; M. S. Kamarudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.442 KB) | DOI: 10.11591/eei.v8i3.1602

Abstract

Transformer thermal modelling is a crucial aspect to be considered as this may help the determination of heat capacity of transformer. This paper present, simulation study on Oil Natural Air Natural (ONAN) transformer heat distribution pattern with and without presence of hot spot temperature (HST). This paper aims to compare the effects of different HST value at different locations inside the transformer unit as well as to evaluate the top oil thermal behaviour of corn oil as cooling mechanism in a transformer. To achieve aforementioned objectives, three HSTs were introduced to the 30 MVA transformer winding to find the total heat build-up in the top of the transformer tank. The outcome of thermal properties is examined using x-y temperature plot. From the results found that the location of HST affects overall transformer’s temperature. HST at the top of the winding give a significant effect compared to when HST is at the bottom of the winding. It is also evident that the usage of corn oil reduced the temperature distribution of the transformer. The findings suggest that the temperature distribution study especially on transformer is important to monitor in-service transformer in a non-invasive manner.
Comparison on space charge and voltage distribution of high voltage insulator subjected to different contamination levels N. A. Samuri; Nordiana Azlin binti Othman; M. A. M. Piah; N. A. M. Jamail; H. Rosli
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (694.851 KB) | DOI: 10.11591/eei.v8i3.1585

Abstract

This paper presents the study of space charge distribution on high voltage (HV) insulators under different levels of contamination. Two types of HV insulators were used in this work particularly glass and porcelain insulators. A string of 4-unit glass and porcelain insulators with 33 kV of lines voltage was designed and simulated using QuickfieldTM software. Four levels of contamination layer with different thickness have been applied on the surface of insulators to observe the effect of space charge distribution. Simulation results show that different types of insulators used at transmission lines give different effects on charge and voltage distribution. It is also found that the amplitude of charge for a single porcelain insulator is much higher compared to a single glass insulator. Similarly for a string of 4-unit insulators, the voltage distribution along the creepage distance of porcelain insulators is much higher compared to glass insulators under all contamination levels.