Muhammad Zidny Naf’an
Institut Teknologi Telkom Purwokerto

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

Sistem Rekomendasi Pemilihan Peminatan Menggunakan Density Canopy K-Means Ridho Ananda; Muhammad Zidny Naf’an; Amalia Beladinna Arifa; Auliya Burhanuddin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 1 (2020): Februari 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (623.312 KB) | DOI: 10.29207/resti.v4i1.1531

Abstract

The carelessly selection of specialization course leaves some students with difficulty. Therefore, it is needed a recommendation system to solve it. Several approaches could be used to build the system, one of them was K-Means. K-Means required the number of initial centroid at random, so its result was not yet optimal. To determine the optimal initial centroid, Density Canopy (DC) algorithms had been proposed. In this research, DC and K-Means (DCKM) was implemented to build the recommendation system in the problem. The alpha criterion was also proposed to improve the performance of DCKM. The academic quality dataset in the 2018 informatics programs students of ITTP was used. There were three main stages in the system, namely determination of the weight of the course in dataset, implementation of DCKM, and determination of specialization recommendations. The results showed that the system by using DCKM has good quality based on the Silhouette results (at least 0.655). The system also used standar valuation scale in ITTP and silhouette index in the process of system. The results showed that 176 (65.91%) students were recommended in IT specialization, 25 (9.36%) students were recommended in MM specialization and 66 (24.7%) students were recommended in SC specialization.
Implementasi Keras Library dan Convolutional Neural Network Pada Konversi Formulir Pendaftaran Siswa Wahyu Andi Saputra -; Muhammad Zidny Naf’an; Asyhar Nurrochman
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 3 No 3 (2019): Desember 2019
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (576.544 KB) | DOI: 10.29207/resti.v3i3.1338

Abstract

Form sheet is an instrument to collect someone’s information and in most cases it is used in a registration or submission process. The challenge being faced by physical form sheet (e.g. paper) is how to convert its content into digital form. As a part of study of computer vision, Optical Character Recognition (OCR) recently utilized to identify hand-written character by learning pattern characteristics of an object. In this research, OCR is implemented to facilitate the conversion of paper-based form sheet's content to be stored properly into digital storage. In order to recognize the character's pattern, this research develops training and testing method in a Convolutional Neural Network (CNN) environment. There are 262.924 images of hand-written character sample and 29 paper-based form sheets from SDN 01 Gumilir Cilacap that implemented in this research. The form sheets also contain various sample of human-based hand-written character. From the early experiment, this research results 92% of accuracy and 23% of loss. However, as the model is implemented to the real form sheets, it obtains average accuracy value of 63%. It is caused by several factors that related to character's morphological feature. From the conducted research, it is expected that conversion of hand-written form sheets become effortless.