Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Sistemasi: Jurnal Sistem Informasi

Analysis of Social Media Users Sentiments against Omnibus Law Based on Hashtags on Twitter Okta Fanny; Heri Suroyo
Sistemasi: Jurnal Sistem Informasi Vol 11, No 1 (2022): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1039.378 KB) | DOI: 10.32520/stmsi.v11i1.1685

Abstract

From the research that has been done, it can be concluded that Sentiment Analysis can be used to know the sentiment of the public, especially Twitter netizens against omnibus law. After the sentiment analysis, it looks neutral artmen with the largest percentage of 55%, then positive sentiment by 35% and negative sentiment by 10%. The results of the analysis showed that the Naïve Bayes Classifier method provides classification test results with accuracy in Hashtag Pro with an average accuracy score of 92.1%, precision values with an average of 94.8% and recall values with an average of 90.7%. While Hashtag Counter For data classification, with an average accuracy value of 98.3%, precision value with an average of 97.6% and recall value with an average of 98.7%. The result of text cloud analysis conducted on a combination of hashtags both Hashtag pros and Hashtags cons, the dominant word appears is Omnibus Law which means that all hashtags in scrap is really discussing the main topic that is about Omnibus Law