Claim Missing Document
Check
Articles

Found 37 Documents
Search

Model berbasis Sistem Kecerdasan Buatan yang Efektif: Analisis Kebijakan bagi Siswa Mengulang Prasetia, Indra; Siregar, Muhammad Noor Hasan; Saragih, Rusmin
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 7, No 2 (2021): Volume 7 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v7i2.47524

Abstract

Pendidikan Sekolah Dasar (SD) sangat penting dalam memberikan keterampilan dasar yang dibutuhkan siswa untuk bertahan dalam mengikuti dan memahami kelas-kelas pada jenjang di atasnya sehingga jika pondasi pendidikan SD kuat maka dapat meningkatkan kualitas pendidikan di Indonesia. Tujuan dari penelitian adalah membuat model arsitektur terbaik yang akan digunakan untuk melakukan peramalan pada jumlah siswa mengulang berdasarkan provinsi pada jenjnag Sekolah Dasar baik negeri dan swasta dengan model berbasis sistem kecerdasan buatan. Sumber data berasal dari data statistik pendidikan dengan url: http://statistik.data.kemdikbud.go.id/. Data terdiri dari 34 provinsi untuk tahun ajaran 2017/2017; 2017/2018; 2018/2019; 2019/2020. Metode solusi yang digunakan adalah back-propagation yang merupakan bagian dari sistem kecerdasan buatan dimana dalam menentukan model arsitektur terbaik dilakukan dengan menguji serangkaian arsitektur (2-5-1; 2-10-1; 2-15-1 dan 2-20-1) mengunakan fungsi aktivasi sigmoid dan parameter pendukung seperti performFcn = MSE; goal = 0.001; epochs = 10000; mc = 0.95 dan lr = 0.1.  Hasil menunjukkan back-propagation dapat diterapkan untuk melakukan peramalan dengan sistem kecerdasan buatan dengan menghasilkan sebuah model arsitektur terbaik yakni 2-10-1 dengan MSE pelatihan adalah 0.00099299, koefisien korelasi (R) pelatihan adalah 0.976972 pada epoch 81, MSE pengujian adalah 0.001325, koefisien korelasi (R) pengujian dengan akurasi 85%. Fakta baru menyebutkan bahwa akurasi sangat tergantung terhadap banyaknya data. Selain harus memperhatikan MSE, epoch dan durasi waktu pelatihan.  Diharapkan model arsitektur ini dapat membantu melakukan peramalan terhadap jumlah siswa mengulang pada jenjang Sekolah Dasar sehingga hasil dari peramalan dapat digunakan untuk membuat analisis kebijakan.
Model Combination of Activation Functions in Neural Network Algorithms (Case: Retail State Sukuk by Group) Muhammad Noor Hasan Siregar
IJISTECH (International Journal of Information System and Technology) Vol 2, No 2 (2019): May
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v2i2.23

Abstract

This study aims to maximize the activation function used in backpropogation networks in finding the best architectural model. The case study used is the sale of state retail sukuk based on professional groups. The combination of activation functions used for training and testing is tansig-tansig, tansig-purelin and tansig logsig. The architectural model used is the architectural model 6-2-1 and 6-5-1. The evaluation parameters used are epoch, MSE training, MSE testing and accuracy level of truth. Data processing is assisted by using Matlab software. The results showed that the tansig-logsig activation function had more stable results than tansig-tansig and tansig-purelin.
Neural Network Analysis With Backpropogation In Predicting Human Development Index (HDI) Component by Regency/City In North Sumatera Muhammad Noor Hasan Siregar
IJISTECH (International Journal of Information System and Technology) Vol 1, No 1 (2017): November
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v1i1.3

Abstract

Human Development Index (HDI) measures human development outcomes based on a number of basic components of quality of life. As a measure of the quality of life, HDI is built through a basic three-dimensional approach. Data obtained from the Central Bureau of Statistics 2015 for Human Development Index (HDI) by Regency / City in North Sumatera Province consisting of 32 alternatives and with 4 parameters ie life expectancy (year), expectation, school length (%), the average length of school (year) and per capita real expenditure (Rp). By using backpropagation obtained result of 6 testing of architecture pattern that is: 4-5-1, 4-10-1, 4-5-10-1, 4-10-5-1, 4-10-20-1 and 4- 15-20-1 obtained best architectural pattern is 4-10-20-1 with epoch 2126, error 0.0011757393, execution time 00:16 and accuracy 100%.
ANN: Model of Back-Propagation Architecture on the Logs Production by Type of Wood Muhammad Noor Hasan Siregar
IJISTECH (International Journal of Information System and Technology) Vol 1, No 2 (2018): May
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v1i2.12

Abstract

Indonesia is rich in forest products. The production forest is a forest area that can be utilized for the community, such as logs, rattan, and some forest plants that have high economic value. This research aims to make the best architectural model by using artificial neural network. The method used is backpropagation algorithm. With this model it will continue to predict the output of logs. Data are sourced from BPS-Statistics Indonesia. Based on the results of research results of logs production using backpropogation method, obtained the result of 3 model architecture (18-18-1, 18-25-1 and 18-18-25- 1) that model of architecture 18- 25-1 is the best model with 72% accuracy, MSE: 0.0221670942 and epochs: 660.
IMPLEMENTASI WEIGHT PRODUCT MODEL (WPM) DALAM MENENTUKAN PEMILIHAN SEPEDA MOTOR SPORT BERBASIS SPK Muhammad Noor Hasan Siregar
KLIK- KUMPULAN JURNAL ILMU KOMPUTER Vol 4, No 1 (2017)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/klik.v4i1.72

Abstract

Perkembangan dunia otomtif khususnya sepeda motor menjadi salah satu trend dikalangan masyrakat saat ini. Banyak jenis produk khususnya sepeda motor sport yang ditawarkan kepada masyrakat. Produk produk ini memiliki keunggulan masing masing. Penelitian ini bertujuan untuk membangun sebuah sistem pendukung keputusan dengan menggunakan metode Weight Product Model (WPM) untuk menentukan pemilihan sepeda motor sport yang paling diminati. Penelitian ini dilaksanakan dengan observasi dan interview untuk melakukan pengumpulan data sepeda motor. Kesimpulan hasil penelitian ini adalah Pemberian kriteria-kriteria dalam pemilihan sepeda motor sport dapat membantu dalam mengambil keputusan untuk menentukan sepeda motor sport yang bagus dan sesuai dengan keinginan konsumen. Dengan Menerapkan metode Weight Product Model (WPM) proses pemilihan sepeda sepeda motor sport lebih efisien dan praktis.Kata Kunci: Pemilihan, SPK, Sepeda motor sport, Metode WPM, Pematangsiantar
Model Arsitektur Artificial Neural Network pada Pelanggan Listrik Negara (PLN) Muhammad Noor Hasan Siregar
InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Vol 3, No 1 (2018): InfoTekJar September
Publisher : Universitas Islam Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30743/infotekjar.v3i1.642

Abstract

Perusahaan Listrik Negara (PLN) merupakan sebuah BUMN yang mengurusi semua aspek kelistrikan yang ada di Indonesia. Meningkatnya kebutuhan masyarakat akan listrik seiring tumbuhnya populasi membuat pelanggan listrik terus bertambah. Penelitian ini bertujuan untuk membuat sebuah model prediksi dengan memanfaatkan kecerdasan buatan yakni Jaringan saraf Tiruan dengan menggunakan algoritma Backpropogation. Data penelitian bersumber dan diolah oleh Badan Pusat Statistik Indonesia (https://www.bps.go.id). Data masukan adalah kelompok pelanggan PLN yang dibagi kedalan 5 kategori yakni Sosial, Rumah Tangga, Bisnis, Industri dan Publik dengan data jumlah pelanggan (2006-2015). Hasil penelitian menunjukkan bahwa 4 pengujian model arsitektur yaitu 5-10-1, 5-25-1, 5-10-25-1 dan 5-25-10-1 diperoleh model 5-25-1 adalah model arsitektur terbaik dengan parameter MSE Pelatihan 0,0009994101, MSE Pengujian 0,0011603685, Epoch 520 dan Akurasi  80%. Diharapkan penelitian ini dapat memberikan prediksi kepada pihak PLN kedepanya tentang jumlah peningkatan pelanggan PLN mengingat listrik adalah salah satu kebutuhan masyarakat.
Prediksi Perhitungan Jumlah Produksi Tahu Mahanda dengan Teknik Fuzzy Sugeno Siti Hajar; Masrof Badawi; Yudika Dwi Setiawan; Muhammad Noor Hasan Siregar; Agus Perdana Windarto
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 4, No 1 (2020): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.631 KB) | DOI: 10.30645/j-sakti.v4i1.200

Abstract

"Mahanda" tofu industry is a home industry managed by family members located in the city of Pematangsiantar. The purpose of this research is to analyze the amount of "Mahanda" tofu production using fuzzy logic. Sources of data obtained by conducting interviews and direct observation. Fuzzy logic used is the Sugeno method. The variables used are demand variables, inventory variables, and production variables. Each variable has 3 fuzzy sets, the request variable consists of {down, medium, up}. Inventory variables consist of {few, medium, many}. And the production variable consists of {reduced, tolerable and increased}. The test data results there is a difference of error of 0.19% so that this method can be applied to the "Mahanda" tofu factory in the estimated tofu production for the next period.
The application of the Analytic Hierarchy Process method to the selection of dominant factors for adolescents who are prone to insecurity Indra Riyana Rahadjeng; Muhammad Noor Hasan Siregar
IJISTECH (International Journal of Information System and Technology) Vol 4, No 2 (2021): May
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v4i2.107

Abstract

Teens are often stressed, worried, and overly insecure as a result of their high expectations. The feelings that occur during adolescent development can create and increase feelings of insecurity in their lives, which has a negative impact. Adolescents with an excessive sense of insecurity can suffer from mental disruption, which can lead to serious mortality. Of course, these factors can have a negative impact on adolescents' mental health. Adolescents' minds and psyches can be disrupted by mental illness. The goal of this study is to identify the dominant factor among a number of factors that can lead to insecurity when using the Decision Support System (DSS) technique. Analytical Hierarchy Process is the DSS method used (AHP). The data used in this study was gathered through observations and interviews with adolescents using a random questionnaire. Six factors were derived from observations and interviews: social environmental factors (A1), family environmental factors (A2), social media factors (A3), insecure factors (A4), trauma factors (A5), and education and work factors (A6). The results of the AHP method show that the main factors for adolescents who are easily insecure are social environmental factors (first), social media factors (second), and family environmental factors (third) (third).
Pemanfaatan Sistem Keputusan Dalam Mengevaluasi Penentuan Aplikasi Chatting Terbaik Dengan Multi Factor Evaluation Process Indra Riyana Rahadjeng; Muhammad Noor Hasan Siregar; Agus Perdana Windarto
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 2 (2022): April 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i2.4021

Abstract

The rapid development of chat application features shows that information technology is increasingly global. This study aims to help smartphone users, especially beginners, to be more selective in choosing the chat application that suits their needs. The method used in this study is a Decision Support System with a Multi-Factor Evaluation Process (MFEP) as a solution for solving cases. The dataset used in this study was obtained by distributing questionnaires to respondents at random, both directly and virtually by using the google form to provide an assessment of the questionnaire to some active users of the Chat application. The alternatives used are Messager, Line, Instagram, Whatsapp, and Telegram and the criteria used are storage media, security, display (interface), application features, and network usage. The results obtained indicate that the Whatsapp alternative is the first recommendation as to the best chat application with a final score of 8.l5. Alternative Instagram became the second recommendation with a final score of 7.21 and Messager became the third recommendation with a final score of 6.18.
Identifikasi Objek Menggunakan Proses Deteksi Tepi Metode Laplacian of Gaussian Dan Canny Terhadap Citra Sidik Jari Edi Suharto; Muhammad Yasin Simargolang; Muhammad Noor Hasan Siregar; Agus Perdana Windarto
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 1 (2022): Januari 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i1.3459

Abstract

Identification is the identification or determination of an object based on evidence as a clue. The objective of the research was to identify biometric images using edge detection of LoG (Laplacian of Gaussian), Canny, and LoG+Canny with different shapes and dimensions. It is expected that the object can still be identified with different shapes and dimensions. The sample of data used was 20 fingerprint images. This fingerprint image was tested using the methods LoG, Canny and LoG+Canny. The process begins with the image reading, and then the image is converted to grayscale, edge detection and image segmentation. The final result is the identification of the image. The results show that the average accuracy is 89.9 per cent for the LoG method, while 81.8 per cent for the Canny method and 90.7 per cent for the LoG + Canny method. From 10 fingerprint image tests, 8 fingerprint images can be identified by both methods. While the LoG + Canny method is capable of identifying 9 fingerprint images. The LoG method can detect images of 2, 4, 5, 6, 7, 8, 9, 10; while the Canny method can detect images of 2, 3, 4, 6, 7, 8, 9, 10; and the LoG + Canny method can detect images of 1, 2, 3, 4, 6, 7, 8, 9, 10. The minimum and maximum pixel values for the LoG method are 11 pixels for the test image and 25327 pixels for the database image. While the minimum and maximum pixel values for the Canny method are 148 pixels for the test image and 42323 pixels for the database image. In the meantime, the minimum and maximum pixel values for the LoG + Canny method are 806 pixels for the test image and 57972 pixels for the database image. The LoG + Canny method can outperform other methods for the identification of fingerprint images from the results of the tests carried out. In addition to the higher accuracy value, the resulting error value is also much smaller. The object images in the LoG method that have not been identified are numbers 1 and 3 with an error of 27.27 percent and 58.33. While the Canny method that has not been identified is number 1 and 5 with an error of 98.31 per cent and 59.92 per cent. The LoG + Canny method that cannot be identified is number 5 with an error of 61.69 per cent. The mean error values for the three methods were 10.1%, 18.2% and 9.3% (LoG, Canny, LoG + Canny).