Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian%20Journal%20of%20Engineering%20and%20Science%20(IJES)

SHOCKWAVE STUDY ON THE WINGS NACA 0012, NACA 64 - 206, AND NASA SC (2) - 0706 WITH Λ = 15O AT 0.85 MACH NUMBER Dewi Puspitasari; Kasyful Warist Kiat
Indonesian Journal of Engineering and Science (IJES) Vol. 2 No. 1 (2021): Table of Contents
Publisher : Asosiasi Peneliti Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51630/ijes.v2i1.10

Abstract

Airfoil is used as a basic form on aircraft wings. Airfoil on the wing of the aircraft is used to produce lift that will lift the fuselage into the air. Lifting force results from the difference in pressure between the upper surface and the lower surface of an aircraft wings. In high speed flights shockwave will occur at certain parts of the wing which will adversely affect the aerodynamic performance of the wing. Wing aerodynamic performance at high speeds can be improved in various ways, one of which is by giving a angle to the wing span called a swept angle. This study will use 3D CFD simulation methods using Ansys Fluent. The airfoil used are NACA 0012, NACA 64-206, and NASA SC (2) -0706 with a chord length of 1 m, AR = 5, and λ = 1 with backward swept angle Λ = 15 °. Free stream flow is air flowing with Mach Number = 0,85 at sea level and steady conditions. Based on the simulation results, shock occurs on the upper and lower surfaces for NACA 0012 with Cl = 0 due to symmetric airfoil, whereas shock occurs only on the upper surface for NACA 64-206 and NASA SC (2) - 0706 with a Cl / Cd value of 18.55 ( NACA 64-206) and 20.78 (NASA SC (2) - 0706). This simulation also provides a visual representation of Mach Number contour plots in the middle stretch (Midspan) of the wing and Cl and Cd data.
HISTORY OF UTILIZATION OF THE COMPUTATIONAL FLUID DYNAMICS METHOD FOR STUDY PICO HYDRO TYPE CROSS-FLOW Dendy Adanta; Dewi Puspita Sari; Nura Muaz Muhammad; Aji Putro Prakoso
Indonesian Journal of Engineering and Science (IJES) Vol. 2 No. 1 (2021): Table of Contents
Publisher : Asosiasi Peneliti Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51630/ijes.v2i1.11

Abstract

Energy crisis in particular, electricity in the isolated rural areas of Indonesia is a very crucial issue that needs to be resolve through electrification . Compared to other options, pico hydro cross-flow turbine (CFT) is the better option to provides electrical power for the isolated rural areas. Studies to improve CFT performance can be undertaken analytically, numerically, experimentally, or a combination of those methods. However, the development of computer technology makes numerical simulation studies have become increasingly frequent. This paper describes the utilization of the computational fluid dynamic (CFD) approach in the pico hydro CFT method. This review has resulted that the recommended Renormalization Group (RNG) k-ε turbulence model for CFT CFD simulation because its absolute relative error is lower than standard k-ε and transitional Shear Stress Transport (SST). The absolute relative error for the RNG k-ε turbulence model of 3.08%, standard k-ε of 3.19%, and transitional SST of 3.10%. While for the unsteady approach, the six-degrees of freedom (6-DoF) are considered because more accurate than moving mesh. The absolute relative error for 6-DoF of 3.1% and moving mesh of 9.5%. Thus, based on the review, the RNG k-ε turbulence model and 6-DoF are proposed for the pico hydro CFT CFD study.
PRODUCTION OF BIOGAS BASED ON HUMAN FESSES AS AN ALTERNATIVE ENERGY FOR REMOTE AREAS APPLICATION Imam Syofii; Dewi Puspita Sari
Indonesian Journal of Engineering and Science (IJES) Vol. 3 No. 1 (2022): Table of Contents
Publisher : Asosiasi Peneliti Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (371.007 KB) | DOI: 10.51630/ijes.v3i1.29

Abstract

The utilise of biogas for remote areas is a problem because it is challenging to supply hydrogen. Hence a study of the utilisation of human fesses as biogas raw material for biogas production is proposed. Due to high investment costs to build miniature power plants, modified gasoline engines are used as mini power plants even though it is a laboratory scale. Based on results, human fesses can be used as raw material for biogas production. Performance engine using biogas derived from human fesses is 9% different from LPG. The maximum efficiency of the biogas system is 32%, and that of the LPG is 41%.