Claim Missing Document
Check
Articles

Found 15 Documents
Search

Energi Mekanik Penggerak Poros Magnet Rotor Alternator untuk Pembangkit Listrik AC Parlindungan Pandapotan Marpaung; Herbert H. Rajagukguk
Piston: Journal of Technical Engineering Vol 5, No 2 (2022)
Publisher : Prodi Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3279.304 KB) | DOI: 10.32493/pjte.v5i2.19158

Abstract

Putaran input poros rotor magnet permanen pada alternator sepeda motor yang menimbulkan perubahan fluks medan magnet melintasi bidang lingkaran penghantar kumparan fasa stator menghasilkan parameter out put energi listrik ac. Pada rancang bangun energi mekanis out put motor listrik ac menggerakkan putaran poros puli rotor magnet permanen alternator pada kecepatan rpm Vrpm1(rotor) = 2880,6 rpm dengan lama sudut putar medan magnet t1(θ.magnet) = 3,47 mS melintasi bidang penghantar kumparan fasa stator menghasilkan parameter listrik ac parameter frekuensi f0(ac.fasa) = 140,8 Hz dan tegangan listrik V01(ac.fasa) = 202,6 volt pada out put alternator. Kemudian dilakukan perubahan energi mekanis pada kecepatan rpm Vrpm2(rotor) = 2500,2 rpm untuk lamanya t2(θ.magnet) = 3,99 mS menghasilkan perubahan frekuensi menjadi f02(ac.fasa) sebesar 116,7 Hz dan V02(ac.fasa) sebesar 170,2 volt. Kesimpulannya energi mekanis out put putaran motor listrik ac pada kecepatan rpm tertentu menggerakkan putaran puli rotor magnet permanen untuk melintasi lingkaran bidang inti normal kumparan fasa stator menjadi faktor isyarat yang menentukan sinyal frekuensi f0(ac.fasa) dan tegangan listrik ac V0(ac.fasa) pada out put alternator.
Design of DC Accumulator Charging using Backup Accumulator Based on Inverter and Converter Device Parlindungan Pandapotan Marpaung
Eksergi Vol 18, No 2 (2022): MAY 2022
Publisher : Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (810.861 KB) | DOI: 10.32497/eksergi.v18i2.3605

Abstract

The charging of DC accumulator thatexperiences a lack of electric charge energy, usuallyutilizes an AC input power from the PLN network. Whenthe AC input power from the PLN network is unavailable,a DC power source is used from the backup DCaccumulator as a substitute. The research objective is todesign an internal DC accumulator charging using abackup DC accumulator equipment based on inverterand converter equipment. The charging system will useinput power from the backup DC accumulator to replacethe AC input power from the PLN network. The electricvoltage of the internal DC accumulator that is filled(charged) is the initial condition of VDC(Acu.Int.)= 8.76 Voltsuntil it reaches the normal condition of 12.05 Volts with acapacity of charging current of 5 Ah (Ampere.hours)absorbs electrical energy of W(Acu.Int.) = 16.45 Wh(Watt.hours). The results show that the equipment supplya DC charger of 13.0 volts and PDCof 21.32 watts to theinternal DC accumulator. The comparison of W(Acu.Int.) to PDC produces time charging, t(charging)of 46.29 minutes
Ketergantungan Resistensi Internal Rancang Bangun Rangkaian Power Supply Sel Surya pada Pengisian Baterai Hand Phone Parlindungan P. Marpaung; Abdul Falah
JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI (IPTEK) Vol. 8 No. 1 (2013): Jurnal Ilmu Pengetahuan dan Teknologi (IPTEK)
Publisher : Institut Teknologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31543/jii.v8i1.40

Abstract

Tegangan DC yang dihasilkan sel surya (model 6 volt, 15 mili-ampere) pada kondisi matahari berawan sekitar 3,0 volt, maka tidak mungkin mengalirkan arus pengisian baterai hand phone (HP) yang mencapai tegangan nominal sebesar 3,7 volt. Untuk itu dibuat sebuah rancang bangun perangkat elektronika power suplai sel surya (PSSS) yang menghasilkan tegangan keluaran V(psss) = 4,22 volt. Kenaikan tegangan ini menyebabkan penurunan arus pengisi sel surya yang berhubungan dengan nilai resistansi internal PSSS, sel surya dan bateri HP yang menjadi beban bagi arus pengisian. Hasil penelitian ini menunjukkan ketergantungan nilai resistansi internal sel surya R(int.selsurya) = 440 Ohm, R(int.psss) = 970 Ohm dan R(int.bat) = 10,59 Ohm. PSSS masih mengalirkan arus saat cahaya matahari berawan dengan arus pengisian ke baterai sebesar 0,43 mili-ampere atau 0,09% dari kapasitas baterai HP 450 mAh.Kata kunci: resistansi internal, open circuit, arus pengisian
Effectiveness of Photovoltaic Solar Cells against Light Wavelength by Irradiating Method of R-G-B Lamp Parlindungan Pandapotan Marpaung; Adi Setiawan
JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI (IPTEK) Vol. 9 No. 1 (2014): Jurnal Ilmu Pengetahuan dan Teknologi (IPTEK)
Publisher : Institut Teknologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31543/jii.v9i1.50

Abstract

Sunlight visible color of white light is composed of light color% mixture of light colors red (R), % lightcolor green (G) and % color blue light (B) is called a basic light color mixture (R+G+ B). Sunlight shining on the surface of the solar cell PV cells convert solar cell produces a voltage at the output referred voltage Voc. In this research, the irradiation treatment surface of each of three samples of the same type solar cells with light colors red, green and blue alternately. Samples used solar cells have the characteristics of the open circuit voltage Voc parameters = 6 volts dc reference voltage Voc expressed as (ref). Each of the three R-G-B light color lamp is connected to a variable dc voltage source in volts. Electrical power R-G-B lights shining on the solar cell is set as large, on PL(R) = PL(G) = PL(B) = 2.27 watts. Radiation treatment each R-G-B light onto the surface of the three samples of solar cells with a distance = 7 cm, the measurement results obtained voltage Voc(R) [average] = 2.91 volts, Voc(G) [average] = 2 , 40 volts, and Voc(B) [average] = 3.02 volts at the output of the solar cell. The effectiveness of PV cells (photovoltaic) is obtained from the comparison of Voc(R) [average-2], Voc(G) [average] and Voc(B) [average] against a reference voltage Voc = 6 volts. Solar cell conversion results obtained irradiating light of each color of R-G-B generate % red light (R) = 34.94 %, % green light (G) = 28.8 % and the % of blue light (B) = 36.2 %. The effectiveness of PV cells to convert solar cell material believed color red, green and blue is expressed by the parameter PV(R), PV(G) and PV(B). Thus obtained PV(R) = 34.9 %, and PV(G) = 28.8 % and further PV(B) = 36.2 %.
Analisis distribusi tegangan liswtrik ke busi dari rangkaian electronic ignition berdasarkan kecepatan rpm flywheel mesin parlindungan parlin marpaung
JURNAL ILMU PENGETAHUAN DAN TEKNOLOGI (IPTEK) Vol. 1 No. 1 (2017): Jurnal Ilmu Pengetahuan dan Teknologi (IPTEK)
Publisher : Institut Teknologi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31543/jii.v1i1.66

Abstract

Rancangan Peralatan Alternator Pada Sistem Pengapian Busi Elektronik CDI Sepeda Motor Parlindungan Pandapotan Marpaung
Jurnal Teknik Elektro Raflesia Vol 2 No 2 (2022): JURNAL TEKNIK ELEKTRO RAFLESIA
Publisher : Politeknik Raflesia Press

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada pengapian busi otomotif kendaraan bahan bakar bensin membutuhkan peralatan sistem pengapian busi. Salah satu sistem pengapian busi elektronika cdi menggunakan peralatan dan komponen elektronika yang menggantikan sistem pengapian busi konvensional. Pada penelitian ini dilakukan rancang bangun sistem pengapian busi elektronika cdi menggunakan peralatan utama alternator menghasilkan sumber tegangan listrik ac out put pada bagian lilitan kumparan exiter. Hasil rancang bangun peralatan dibangkitkan sinyal pewaktu dari komponen pulser terkait kecepatan rpm poros rotor magnet permanen alternator yang digerakkan oleh putaran poros motor listrik ac. Proswes timing pengapian busi dikontrol oleh kondisi charge/discharge muatan kapasitor elektronik berada dalam peralatan cdi untuk menghasilkan tegangan listrik ac out put fungsi waktu ke input primer koil dinyatakan parameter Vprimer(t) satuan volt. Hasil tegangan listrik Vprimer(t) pada input primer koil terinduksi membangkitkan tegangan tinggi pada bagian out put sekunder koil pengapian dinyatakan parameter Vo(koil). Hasil tegangan tinggi Vo(koil) sesaat terhubung ke busi menghasilkan pengapian busi yang terindikasi terjadi percikan bunga api pada celah busi.
EFEK KENAIKAN SUHU DAPUR INDUKSI ELEKTROMAGNETIK ALTERNATOR TERHADAP PERUBAHAN RESISTANSI LILITAN STATOR Parlindungan Pandapotan Marpaung
Jurnal Poli-Teknologi Vol. 21 No. 2 (2022)
Publisher : Politeknik Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32722/pt.v21i2.4506

Abstract

In this study, the design of the ac power plant equipment using an alternator derived from a motorcycle was carried out to produce an ac output voltage in the stator coil winding based on the electromagnetic induction process. The problem is that the ac output voltage flows rotary current or eddy current through the coil windings causing heat in the core plane which is in the alternator electromagnetic induction furnace. The initial condition of the electromagnetic induction alternator temperature is Tind(awal) = 30 oC, coil resistance Rt(awal) = 1.28 ohms and ac output voltage Vo(awal) = 12.68 volts. The research method was carried out by increasing the Tind parameter initial causing the effect of increasing the resistance of the conductor coil winding material as the output voltage decreased. The specification of the temperature coefficient of the coil conducting conductor is 0.0291 oC-1 the temperature increase of the electromagnetic induction alternator is Tind. 62 oC causes the effect of increasing the coil resistance as the output voltage decreases to Vo(temp.) = 7.68 volts ac. This decrease in the ac output voltage of the alternator causes the electricity supply to the automotive electrical load to become ineffective and inefficient. Keywords: alternator ; electromagnetic induction ; coil windin ; temperature coefficient ; initial conditions
Analisis Putaran Puli Roda Gigi Flywheel Penggerak Beban Putaran Roda Gigi Transmisi Otomotif Parlindungan Pandapotan Marpaung
JURNAL FLYWHEEL Vol 13 No 2 (2022): Jurnal Flywheel
Publisher : Teknik Mesin S1 ITN Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/flywheel.v13i2.5712

Abstract

Daya listrik motor listrik ac sebesar Pin = 310,4 watt menghasilkan putaran poros output digunakan menggerakkan putaran puli roda gigi flywheel menghasilkan kecepatan putar Vrpm(in) = 347,8 rpm dengan torsi putaran parameter Tin = 8,53 Nm ditransmisikan menuju setiap masing-masing beban putaran puli roda gigi transmisi maju-1 s/d transmisi maju-4 dan transmisi mundur. Hasil penelitian pada kecepatan putar puli roda gigi flywheel parameter Vrpm(in) sebesar 347,8 rpm tersebut ditransmisikan menuju beban roda gigi transmisi maju-1 menghasilkan putaran Vrpm(maju-1) = 89,6 rpm, torsi Tout(maju-1) = 33,1 Nm dan daya mekanik Pout(maju-1) = 191,87 watt. Kemudian ditransmisikan menuju beban roda gigi transmisi maju-2 menghasilkan Vrpm(maju-2) = 162,7 rpm, Tout(maju-2) = 17,34 Nm dan Pout(maju-2) = 100,51 watt. Selanjutnya ditransmisikan menuju beban roda gigi transmisi maju-3 adalah Vrpm(maju-3) = 248,2 rpm, Tout(maju-3) = 11,36 Nm dan Pout(maju-3) = 65,85 watt. Ditransmisikan menuju beban roda gigi transmisi maju-4 menghasilkan Vrpm(maju-4) = 347,8 rpm, Tout(maju-4) = 8,11 N dan Pout(maju-4) = 47,01 watt. Untuk menuju beban roda gigi transmisi mundur menghasilkan Vrpm(mundur) = 75,4 rpm, Tout(mundur) = 37,44 Nm dan Pout(mundur) = 217,03watt.
RANCANGAN PERALATAN ALTERNATOR PADA SISTEM PENGAPIAN BUSI ELEKTRONIK CDI SEPEDA MOTOR Parlindungan Pandapotan Marpaung
Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol. 2 No. 3 (2022): November : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer
Publisher : Amik Veteran Porwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (984.463 KB) | DOI: 10.55606/teknik.v2i3.621

Abstract

In automotive spark plug ignition, gasoline-fueled vehicles require spark ignition system equipment. One of the electronic cdi spark plug ignition systems uses electronic equipment and components that replace conventional spark plug ignition systems. In this study, the design of the electronic cdi spark plug ignition system using the main equipment of the alternator produces an ac output voltage source on the exiter coil winding. The results of the design of the equipment are generated by a timer signal from the pulser component related to the rpm speed of the alternator permanent magnet rotor shaft which is driven by the rotation of the ac electric motor shaft. The ignition timing process of the spark plug is controlled by the charge/discharge condition of the electronic capacitor charge in the cdi device to produce an ac power supply voltage, the output time function to the primary input of the coil is expressed as the Vprimer(t) parameter in volts. The result of the primary voltage Vprimer(t) at the primary input of the induced coil generates a high voltage at the secondary output of the ignition coil, which is expressed as the Vo(coil) parameter. The result of a high voltage Vo(coil) momentarily connected to the spark plug produces spark ignition which indicates that there is a spark in the spark plug gap.
ANALISIS PUTARAN PULI RODA GIGI FLYWHEEL PENGGERAK BEBAN PUTARAN RODA GIGI TRANSMISI OTOMOTIF Parlindungan Pandapotan Marpaung
Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol. 2 No. 3 (2022): November : Jurnal Teknik Mesin, Elektro dan Ilmu Komputer
Publisher : Amik Veteran Porwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (955.659 KB) | DOI: 10.55606/teknik.v2i3.622

Abstract

The electric power of an ac electric motor of Pin = 310.4 watts produces rotation of the output shaft which is used to drive the flywheel gear pulley to produce a rotational speed of Vrpm(in) = 347.8 rpm with a torque parameter of Tin = 8.53 Nm which is transmitted to each each load rotation of the gear pulley of the forward transmission-1 to the forward transmission-4 and the reverse transmission. The results of the research on the speed of the flywheel gear pulley, the Vrpm(in) parameter of 347.8 rpm, was transmitted to the forward-1 transmission gear load resulting in Vrpm(forward-1) = 89.6 rpm, torque Tout(forward-1) = 33.1 Nm and mechanical power Pout(forward-1) = 191.87 watts. Then it is transmitted to the forward-2 transmission gear load producing Vrpm (forward-2) = 162.7 rpm, Tout (forward-2) = 17.34 Nm and Pout (forward-2) = 100.51 watts. Then transmitted to the gear load of the forward-3 transmission is Vrpm(forward-3) = 248.2 rpm, Tout(forward-3) = 11.36 Nm and Pout(forward-3) = 65.85 watts. Transmitted to the transmission gear load forward-4 produces Vrpm (forward-4) = 347.8 rpm, Tout (forward-4) = 8.11 N and Pout (forward-4) = 47.01 watts. To go to the reverse transmission gear load produces Vrpm (reverse) = 75.4 rpm, Tout (backward) = 37.44 Nm and Pout (reverse) = 217.03watt.