Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data Ningrum, Endah Suryawati; Hakkun, Rizky Yuniar; Alasiry, Ali Husein
EMITTER International Journal of Engineering Technology Vol 3, No 2 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (816.382 KB)

Abstract

This research deals with formation control of swarm robot based on changing of robot’s relative positional data. A follow the leader movement with simple triangle formation case is applied with three robots; a leader with two followers. Trilateration method is used as a method of determining the position of the leader robot from the follower robots using the distance to the reference point (local positioning). Follower robots are designed to follow every movement of the leader on a formation position. The controller is designed to maintain the formation position of the follower robots relatively to the leader. As a uniqueness, a relative positional control method by using bearing angle and distance error is proposed instead of the common Cartesian positional error control. From the experiment which conducted in maximum distance between the robots,it was obtained a maximum error approximately 56%. The follower robots are able to follow any changes in motion of the robot leader with average distance error of 36%.Keywords: Cooperative mobile robot, formation control, trilateration, follow the leader
Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data Ningrum, Endah Suryawati; Hakkun, Rizky Yuniar; Alasiry, Ali Husein
EMITTER International Journal of Engineering Technology Vol 3, No 2 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (816.382 KB) | DOI: 10.24003/emitter.v3i2.48

Abstract

This research deals with formation control of swarm robot based on changing of robot’s relative positional data. A follow the leader movement with simple triangle formation case is applied with three robots; a leader with two followers. Trilateration method is used as a method of determining the position of the leader robot from the follower robots using the distance to the reference point (local positioning). Follower robots are designed to follow every movement of the leader on a formation position. The controller is designed to maintain the formation position of the follower robots relatively to the leader. As a uniqueness, a relative positional control method by using bearing angle and distance error is proposed instead of the common Cartesian positional error control. From the experiment which conducted in maximum distance between the robots,it was obtained a maximum error approximately 56%. The follower robots are able to follow any changes in motion of the robot leader with average distance error of 36%.Keywords: Cooperative mobile robot, formation control, trilateration, follow the leader
Tracking and Formation Control of Leader-Follower Cooperative Mobile Robots Based on Trilateration Data Endah Suryawati Ningrum; Rizky Yuniar Hakkun; Ali Husein Alasiry
EMITTER International Journal of Engineering Technology Vol 3 No 2 (2015)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (816.382 KB) | DOI: 10.24003/emitter.v3i2.48

Abstract

This research deals with formation control of swarm robot based on changing of robot’s relative positional data. A follow the leader movement with simple triangle formation case is applied with three robots; a leader with two followers. Trilateration method is used as a method of determining the position of the leader robot from the follower robots using the distance to the reference point (local positioning). Follower robots are designed to follow every movement of the leader on a formation position. The controller is designed to maintain the formation position of the follower robots relatively to the leader. As a uniqueness, a relative positional control method by using bearing angle and distance error is proposed instead of the common Cartesian positional error control. From the experiment which conducted in maximum distance between the robots,it was obtained a maximum error approximately 56%. The follower robots are able to follow any changes in motion of the robot leader with average distance error of 36%.Keywords: Cooperative mobile robot, formation control, trilateration, follow the leader
Walking Trajectory Optimization Algorithm For Robot Humanoid on Synthetic Grass Dimas Pristovani Riananda; Ardik Wijayanto; Ali Husein Alasiry; A. Subhan Khalilullah
EMITTER International Journal of Engineering Technology Vol 6 No 1 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1223.267 KB) | DOI: 10.24003/emitter.v6i1.229

Abstract

Synthetic grass surface is a new rule in international robot soccer competition (RoboCup). The main issue in the development of the RoboCup competition today is about how to make a humanoid robot walk above the field of synthetic grass. Because of that, the humanoid robot needs a system that can be implemented into the walking algorithm. This paper describes how to maintain the stability of humanoid robot called EROS by using walking trajectory algorithm without a control system. The establishment of the walking trajectory system is combined with a process of landing optimization using deceleration and heel-strikes gait optimization. This system has been implemented into a humanoid robot with 52 cm of height and walking on synthetic grass with different speeds. By adding optimization, the robot walks more stable from 32% to 80% of stability. In the next research, the control system will be added to improve the stability.