Claim Missing Document
Check
Articles

Found 2 Documents
Search

IN SILICO POTENTIAL ANALYSIS OF X6D MODEL OF PEPTIDE SURFACTANT FOR ENHANCED OIL RECOVERY Sari, Cut Nanda; Usman, Usman; Hertadi, Rukman; Wijaya, Tegar Nurwahyu; Herlina, Leni; Suliandari, Ken Sawitri; Syafrizal, Syafrizal; Kristiawan, Onie
Scientific Contributions Oil and Gas Vol 39, No 2 (2016)
Publisher : Scientific Contributions Oil and Gas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/SCOG.39.2.107

Abstract

Peptides and their derivatives can be applied in enhanced oil recovery (EOR) due to their ability to form an emulsion with hydrophobic molecules. However, peptide research for EOR application, either theoretical or computational studies, is still limited. The purpose of this research is to analyse the potency of the X6D model of surfactant peptide for EOR by molecular dynamics simulations in oil-water interface. Molecular dynamics simulation using GROMACS Software with Martini force field can assess a peptide’s ability for self-assembly and emulsification on a microscopic scale. Molecular dynamics simulations combined with coarse grained models will give information about the dynamics of peptide molecules in oil-water interface and the calculation of interfacial tension value. Four designs of X6D model: F6D, L6D, V6D, and I6D are simulated on the oil-water interface. The value of interfacial tension from simulation show the trend of F6D L6D > I6D > V6D. The results indicate that V6D has the greatest reduction in interfacial tension and has the stability until 90°C with the salinity of at least 1M NaCl.
MOLECULAR DYNAMICS STUDY OF OLEIC ACID-BASED SURFACTANTS FOR ENHANCED OIL RECOVERY Suhendar, Aang; Hertadi, Rukman; Alli, Yani F
Scientific Contributions Oil and Gas Vol 41, No 3 (2018)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (814.391 KB) | DOI: 10.29017/SCOG.41.3.331

Abstract

Surfactants have been intensively used for Enhanced Oil Recovery (EOR). Nevertheless, environmental issues cause some surfactants to become unfavored in EOR application. Biodegradable surfactants are the suitable choice to make the environment safer. However, screening surfactants that have a good performance for EOR are time-consuming and costly. Molecular Dynamics (MD) simulation is an alternative solution to reduce cost and time. In the present study, oleic acid-based surfactants that combined with the various length of polyethylene glycol were studied. The potential surfactants were screened by MD simulation to evaluate their ability to reduce the Interfacial Tension (IFT) between oil and water layers, which is the by GROMACS software with Gromos force field and SPC water model. Carboxyl-terminal of the oleic acid was substituted by a different length of polyethylene glycol. All MD simulations were prepared in octadecanewater mixture with temperature ranges of 303-363 K. Our simulations found that the increasing number of polyethylene glycol was not always followed by the decreasing of IFT value between octadecane and water layers. These results were validated with the experimental data and found the similar IFT profile. The simulation of oil emulsification showed that all surfactant samples have good performance and stability as exhibited by their emulsification rate and emulsion stability in different temperatures. The last test to get the best surfactant was the wetability test. The simulation gave the result that both PEG100-oleic and PEG400-oleic were able to change wetability of rocks from oil-wet to water-wet. Accordingly, PEG400-oleic is the best nonionic surfactant candidate due to its performance in each simulation test.