Claim Missing Document
Check
Articles

Found 4 Documents
Search

Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1 Azahari Azahari; Yulindawati Yulindawati; Dewi Rosita; Syamsuddin Mallala
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7, No 3: Juni 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020732093

Abstract

Prediksi  kelulusan  dibutuhkan  oleh  manajemen  perguruan  tinggi  dalam  menentukan kebijakan  preventif  terkait  pencegahan  dini  kasus drop  out. Lama masa studi setiap mahasiswa bisa disebabkan dengan berbagai faktor.  Dengan  menggunakan data mining algoritma naive bayes dan neural network dapat  dilakukan  prediksi  kelulusan  mahasiswa di  STMIK  Widya  Cipta  Dharma (WiCiDa) Samarinda . Atribut yang digunakan yaitu, umur saat masuk kuliah, klasifikasi kota asal Sekolah Menengah Atas, pekerjaan ayah, program studi, kelas, jumlah saudara, dan Indeks Prestasi Kumulatif (IPK). Sampel mahasiswa yang lulus dan drop-out pada tahun 2011 sampai 2019 dijadikan sebagai data training dan data testing. Sedangkan angkatan 2015–2018 digunakan sebagai data target yang akan diprediksi masa studinya. Sebanyak 3229 mahasiswa, 1769 sebagai data training, 321 sebagai data testing, dan 1139 sebagai data target. Semua data diambil dari data mahasiswa program strata 1, dan tidak mengikut sertakan data mahasiswa D3 dan alih jenjang/transfer.  Dari data testing diperoleh tingkat akurasi hanya 57,63%. Hasil penelitian menunjukkan banyaknya kelemahan dari hasil prediksi naive bayes dikarenakan tingkat akurasi kevalidannya tergolong tidak terlalu tinggi. Sedangkan akurasi prediksi neural network adalah 72,58%, sehingga metode alternatif inilah yang lebih baik. Proses evaluasi dan analisis dilakukan untuk melihat dimana letak kesalahan dan kebenaran dalam hasil prediksi masa studi.AbstractGraduation predictions are required by the higher education institution preventive policies related to the early prevention of drop-out cases. The duration of study, for each student can be caused by various factors. By using the data mining algorithm Naive bayes and neural network, the student graduation in STMIK Widya Cipta Dharma (WiCiDa) can be predicted. The attributes used are as follows: age at admission, classification of cities from high school, father’s occupation, study program, class, number of siblings, and grade point average (GPA). Samples of students who graduated and dropped out between year 2011 and 2019 were used as training data and testing data. While the year class of 2015to 2018 is used as the target data, which will be predicted during the study period. According to the data mining algorithm Naive bayes, there are 3229 students; 1769 as training data, 321 as testing data, and 1139 as target data. All data is taken from students enrolled in undergraduate program and does not include data on diploma students and transfer student. From the testing data, an accuracy rate only 57.63%. The other side, prediction accuracy of the neural network is 72.58%, so this alternative method is the best chosen. The research results show the many weaknesses of the results of prediction of Naive bayes because the level of accuracy of its validity is not high. The evaluation and analysis process are conducted to see where the errors and truths are in the results of the study period predictions.
Probabilitas dalam Finite State Machine Agen Cerdas Edugame “Ajut-Ajut Kids” Siti Lailiyah; Yunita Yunita; Syamsuddin Mallala
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 2: Mei 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1586.321 KB)

Abstract

Edugame “Ajut-ajut Kids” dibangun melalui tahapan multimedia untuk mengenalkan pembelajaran bahasa Dayak Benuaq kepada anak. Permainan ini berjenis matching, yaitu pemain harus mencocokkan gambar dan kata bahasa Dayak. Makalah ini menerapkan teknik pengacakan pada susunan gambar dan kata pada setiap babak untuk membuat permainan tidak berkurang tantangannya. Pengacakan dan probabilitas juga diterapkan dalam agen cerdas yang menemani anak bermain dalam bentuk karakter cilik berbaju adat Dayak. Agen cerdas, yang menerapkan model Finite State Machine (FSM), akan memberikan ekspresi senang, sedih, dan sebagainya, sesuai gaya bermain anak. Adanya pengacakan dan probabilitas dalam model FSM membuat agen kadang-kadang juga dapat memberikan ekspresi yang acak. Hal ini membuat agen lebih natural. Hasil pengujian membuktikan pengacakan dan probabilitas berhasil membuat permainan ini tidak monoton dan lebih interaktif.
PENERAPAN METODE C 4.5 UNTUK PENENTUAN KELULUSAN MATAKULIAH MATEMATIKA DISKRIT Syamsuddin Mallala; Basrie Basrie
Jurnal Informatika Wicida Vol 10 No 2 (2021): Juli 2021
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625 KB) | DOI: 10.46984/inf-wcd.1925

Abstract

Penilaian untuk kelulusan matakuliah di tiap dosen berbeda-beda pada matakuliah. Khusus untuk matematika diskrit ini bukan lagi penilaian di ambil secara umum seperti tugas, uts, uas tapi diperoleh dari penguasaan tiap materi. Materi perkuliahan menjadi kriteria dalam penilaian untuk kelulusan mahasiswa. Dari kriteria tersebut dapat diolah untuk menentukan secara cepat jumlah mahasiswa yang lulus dan tidak lulus matakuliah tanpa dilakukan penghitungan nilai akhir dengan cara mengambil data training atau data sample untuk diolah menjadi dasar dari penuntuan keputusan. Pengolahan cepat ini dapat dilakukan dengan menggunakan salah satu algoritma dari C4.5. Algoritma C.4.5 merupakan algoritma yang digunakan untuk membentuk pohon keputusan (Decision Tree).
PENANAMAN DAN CARA PENILAIAN PENDIDIKAN KARAKTER (PPK) DENGAN MENGGUNAKAN APLIKASI WHATSAPP PADA SMK GERBANG RAJA TENGGARONG Syamsuddin Mallala
Jurnal Informatika Wicida Vol 10 No 2 (2021): Juli 2021
Publisher : STMIK Widya Cipta Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.109 KB) | DOI: 10.46984/inf-wcd.1926

Abstract

Covid-19 membuat sendi kehidupan diseluruh negara termasuk Indonesia jadi terkendala, dan yang paling terdampak adalah dunia pendidikan, dan semua negara mencari alternative pembelajaran yang sifatnya pembelajaran jarak jauh yang dikenal pembelajaran dalam jaringan (daring), sehinnga diseluruh belahan dunia menngunakan media social sebagai alternative termasuk Whatsapp (WA). Namun pembelajaran daring ini memunculkan masalah berkaitan penilaian di tinggkat pendidikan dasar adalah penilaian non kognitif, diantaranya adalah pendidikan karakter. STMIK Widya Cipta Dharma merupakan perguruan tinggi yang ada di Kalimantan Timur dengan jurusan ilmu komputer ikut berkonstribusi dalam sistem pembelajaran ini dengan tridharam perguruan tingginya yaitu pengabdian masyarakat ikut membantu sekolah-sekolah yang membutuhkan, termasuk kompenen penilaian dan perkenalan vitur-vitu yang ada dimedia WA utk dipakai dalam pembelajaran. Dalam kegiatan ini Pemateri menggunakan metode ceramah dan langsung menngunakan media WA, yang dibuka di laptop kemudian dihubungkan dengan LCD Proyektor. Setelah mengikuti pelatihan ini diharapkan guru sudah bisa menilai aspek karakter dalam pembelajaran daring dan lebih kreatif dalam pembelajaran dengan menggunakan WA