Winita Sulandari
Universitas Gadjah Mada Yogyakarta and Universitas Sebelas Maret Surakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document

Found 1 Documents

Forecasting electricity load demand using hybrid exponential smoothing-artificial neural network model Winita Sulandari; Subanar Subanar; Suhartono Suhartono; Herni Utami
International Journal of Advances in Intelligent Informatics Vol 2, No 3 (2016): November 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i3.69


Short-term electricity load demand forecast is a vital requirements for power systems. This research considers the combination of exponential smoothing for double seasonal patterns and neural network model. The linear version of Holt-Winter method is extended to accommodate a second seasonal component. In this work, the Fourier with time varying coefficient is presented as a means of seasonal extraction. The methodological contribution of this paper is to demonstrate how these methods can be adapted to model the time series data with multiple seasonal pattern, correlated non stationary error and nonlinearity components together. The proposed hybrid model is started by implementing exponential smoothing state space model to obtain the level, trend, seasonal and irregular components and then use them as inputs of neural network. Forecasts of future values are then can be obtained by using the hybrid model. The forecast performance was characterized by root mean square error and mean absolute percentage error. The proposed hybrid model is applied to two real load series that are energy consumption in Bawen substation and in Java-Bali area. Comparing with other existing models, results show that the proposed hybrid model generate the most accurate forecast